Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(a=2^x;b=2^y;c=2^z\)
Khi đó : \(a,b,c>0;abc=2^{x+y+z}=64\)
Ta cần c/m : \(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^3+32-6a^2=\left(a-4\right)^2\left(a+2\right)\)
Theo đó, ta cần sử dụng giả thiết : \(a>0\), suy ra : \(a^3+32\ge6a^2\)
Thiết lập các bđt tương tự cho b và c và cộng theo vế các bđt tìm được, ta có :
\(a^3+b^3+c^3+96\ge6\left(a^2+b^2+c^2\right)\)
Ta cần c/m thêm : \(6\left(a^2+b^2+c^2\right)\ge4\left(a^2+b^2+c^2\right)+96\)
hay : \(2\left(a^2+b^2+c^2\right)\ge2.3\sqrt[3]{a^2b^2c^2}=6\sqrt[3]{4096}=96\)
\(\Rightarrowđpcm\)
mik làm cách khác,mấy bạn cho điểm nhá!
Sai đề:x+y+z=6
Đặt\(a=2^x,b=2^y,c=2^z\)
\(\Rightarrow abc=2^{x+y+z}=64\)
Áp dụng bất đẳng thức AM-GM,ta được:
\(3\sqrt[3]{abc}\le a+b+c\)
Ta có:\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Hay \(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Thật vậy:
Áp dụng bất đẳng thức AM-GM một lần nữa,ta được:
\(a^3+a^3+b^3\ge3a^2b\)
\(a^3+a^3+c^3\ge3a^2c\)
\(a^3+b^3+b^3\ge3b^2a\)
\(a^3+c^3+c^3\ge3c^2a\)
\(b^3+b^3+c^3\ge3b^2c\)
\(b^3+c^3+c^3\ge3c^2b\)
Cộng vế theo vế của các bất đẳng thức,ta được:
\(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Dấu "="xẩy ra khi và chỉ khi:\(a=b=c\)
Giả sử : \(y=ax\)
Thay vào giả thiết : \(\frac{ax}{x+ax}+\frac{2\left(ax\right)^2}{x^2+\left(ax\right)^2}+\frac{4\left(ax\right)^4}{x^4+\left(ax\right)^4}+\frac{8\left(ax\right)^8}{x^8-\left(ax\right)^8}=4\)
\(\Leftrightarrow\frac{x.a}{x.\left(a+1\right)}+\frac{x^2.2a^2}{x^2\left(1+a^2\right)}+\frac{x^4.4a^4}{x^4\left(1+a^4\right)}+\frac{x^8.8a^8}{x^8\left(1-a^8\right)}=4\)
\(\Leftrightarrow\frac{a}{a+1}+\frac{2a^2}{a^2+1}+\frac{4a^4}{a^4+1}+\frac{8a^8}{1-a^8}=4\)
Tới đây bạn giải ra , tìm a rồi thay vào y = ax là ra :)
Áp dụng BĐT Cauchy cho 2 số không âm, ta được:
\(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Leftrightarrow\sqrt{\frac{2}{xy}}\le1\Leftrightarrow xy\ge2\)
\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\ge x^2+y\)
\(=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{x^2.\frac{y}{2}.\frac{y}{2}}=3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\sqrt[3]{\frac{4}{4}}=3.1=3\)
\(\left(1+x\right)^2=\left(1.1+\sqrt{xy}.\sqrt{\dfrac{x}{y}}\right)^2\le\left(1+xy\right)\left(1+\dfrac{x}{y}\right)=\dfrac{\left(1+xy\right)\left(x+y\right)}{y}\)
\(\Rightarrow\dfrac{1}{\left(1+x\right)^2}\ge\dfrac{y}{\left(1+xy\right)\left(x+y\right)}\)
Tương tự ta có: \(\dfrac{1}{\left(1+y\right)^2}\ge\dfrac{x}{\left(1+xy\right)\left(x+y\right)}\)
Cộng vế với vế:
\(\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1+y\right)^2}\ge\dfrac{x+y}{\left(1+xy\right)\left(x+y\right)}=\dfrac{1}{1+xy}\)
Dấu "=" xảy ra khi \(x=y=1\)
Đặt \(\dfrac{x}{z}=a;\dfrac{y}{z}=b\).
Theo gt ta có \(a+b\le1\).
BĐT cần chứng minh tương đương:
\(a^2+b^2+\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge \frac{21}{2}\).
Theo bđt AM - GM: \(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge2;a^2+\dfrac{1}{16}a^2\ge\dfrac{1}{2};b^2+\dfrac{1}{16}b^2\ge\dfrac{1}{2};\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\ge\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{15}{32}.\left(\dfrac{4}{a+b}\right)^2\ge\dfrac{15}{2}\).
Cộng vế với vế của các bđt trên lại ta có đpcm.
Với x,y là số thực lớn hơn 0,13 ta có:
\(\left(xy+yz+zx\right)^2\)
\(=\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2+2xyyz+2xyzx+2yzzx\)
Vì x,y,z đều là số thực dương lớn hơn 0 nên:
\(\left(xy\right)^2,\left(yz\right)^2,\left(zx\right)^2,2xyyz,2xyzx,2yzzx\) đều lớn hơn 0
Vậy \(\left(xy+yz+zx\right)^2>0\)
Từ giả thiết , ta có :
\(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1\right)\)
\(\Rightarrow1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\)
Áp dụng bất đẳng thức sau : \(abc\le\left(\frac{a+b+c}{3}\right)^3\) ta có :
\(1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\le\left(\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3}{3}\right)^3\)
\(\Rightarrow3\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3\)
\(\Rightarrow6\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow6xyz\le xy+yz+zx\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra:
\(3-3\left(x+y+z\right)+3\left(xy+yz+zx\right)=6xyz\le xy+yz+zx\)
\(\Rightarrow0\ge3-3\left(x+y+z\right)+2\left(xy+yz+zx\right)\)
Cộng 2 vế của bất đẳng thức trên cho \(\left(x^2+y^2+z^2\right)\)ta được:
\(x^2+y^2+z^2\ge\left(x+y+z\right)^2-3\left(x+y+z+3\right)=\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu '' = '' xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)
ta có:
xyz=(1-x).(1-y).(1-z) (1)
=>1=(1:x-1).(1:y-1).(1:z-1)