Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) giả sử: A = n(n+1) , có 2 trường hợp:
nếu n chẵn thì n chia hết cho 2 do đó A chia hết chia 2
nếu n lẻ thì n+1 chẵn do đó n+1 chia hết cho 2 nên A chia hết cho 2
Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6
Bậy rồi nha!
4 lớn hơn 3 mà:
42 - 1 hay 42-1 (nếu cái trước không pphair ý bạn) cũng đâu chia hết cho 24 đâu.
* CM m^2-1\(⋮\)3
vì 1 SCP :3 dư 0 hoặc 1 mà m là SNT >3=>m^2:3 dư 1=>m^2-1\(⋮\)3 (1)
*CM m^2-1\(⋮\)8
vì 1 SCP :8 dư 0,1,4 mà p là SNT >3 => m^2:8 dư 1 => m^2-1\(⋮\)8(2)
từ (1) và (2) và (3,8)=1=> m^2-1\(⋮\)24=>ĐPCM
a) Gọi a+4b là c, 10a+b là d.Ta có:
a+4b= c
10a+b = d
=> 3a+ 12b =3c
10a + b = d
=> 3c+d = 10a+3a+12b+b = 13a + 13b =13(a+b) => 3c + d chia hết cho 13
Mà: 3c+d chia hết cho 13
3c chia hết cho 13
=> d chia hết cho 13 hay 10a+ b chia hết cho 13
a) Gọi số đó là x thì 4 số tự nhiên liên tiếp là : x ; x + 1 ; x + 2 ; x + 3
Ta để ý thì ta thấy tích 3 số tự nhiên liên tiếp luôn chia hết cho 6 ( Cái này nhỏ hơn nên bạn có thể tự CM )
Một trong 4 số liên tiếp này có ít nhât 1 số chia hết cho 4
=> tích chia hết cho 6.4 = 24
b) Từ cách CM trên, bạn có thể chứng minh 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
Và tích liên tiếp trên sẽ chia hết cho 24.5 = 120
xét m tận cùng bằng 0 hoặc 5=>mn chia hết cho 5
xét m lẻ=>m4 có tận cùng bằng 1
=>24.m4+1 có tận cùng bằng 5
=>n có tận cùng bằng 5
=>mn chia hết cho 5
xét m chẵn=>m4 có tận cùng bằng 6
=>24.m4+1 có tận cùng bằng 5
=>n có tận cùng bằng 5
=>mn chia hết cho 5
từ các dữ liệu trên=>mn chia hết cho 5
=>đpcm