Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hệ quả của bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)
Mà \(x^2+y^2+z^2\le3\)
\(\Rightarrow xy+yz+xz\le3\)
Ta có \(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{xy+1+yz+1+xz+1}=\dfrac{9}{xy+yz+xz+3}\) (1)
Ta có \(xy+yz+xz\le3\)
\(\Rightarrow xy+yz+xz+3\le6\)
\(\Rightarrow\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{6}=\dfrac{3}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow P\ge\dfrac{3}{2}\)
Vậy \(P_{min}=\dfrac{3}{2}\)
Dấu " = " xảy ra khi \(x=y=z=1\)
2) Ta có:
\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)
Do \(x+y-2=0\Rightarrow x+y=2\)
\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)
\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)
\(=0+0+3\)
\(=3\)
Vậy \(B=3\)
1) Ta có:
\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)
\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(=0+0+0+1\)
\(=1\)
Vậy \(A=1\)
\(\begin{cases}\sqrt{xy}+\frac{1}{\sqrt{xy}}=\frac{5}{2}\\\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{9}{2}\end{cases}\)
<=>\(\begin{cases}xy+1=\frac{5\sqrt{xy}}{2}\\\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}+\sqrt{y}=\frac{9\sqrt{xy}}{2}\end{cases}\)
Đặt P=\(\sqrt{xy}\);S=\(\sqrt{x}+\sqrt{y}\)(S2\(\ge\)4P)
Ta có HPT: \(\begin{cases}P^2+1=\frac{5P}{2}\\S.P+P=\frac{9P}{2}\end{cases}\)
Tới đây dễ tự làm