K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2020

B1: 

\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18\sqrt{2}\left(a^2-2b^2\right)=3\left(a^2-2b^2\right)\)

\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18a^2\sqrt{2}-36b^2\sqrt{2}=3a^2-6b^2\)

\(\Leftrightarrow18a^2\sqrt{2}-36b^2\sqrt{2}-9b\sqrt{2}=3a^2-6b^2-a\)

\(\Leftrightarrow\left(18a^2-36b^2-9b\right)\sqrt{2}=3a^2-6b^2-a\)

Nếu \(18a^2-36b^2-9b\ne0\Rightarrow\sqrt{2}=\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\)

Vì a,b nguyên nên \(\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\in Q\Rightarrow\sqrt{2}\in Q\)=> Vô lý vì \(\sqrt{2}\)là số vô tỉ.

Vậy ta có: \(18a^2-36b^2-9b=0\Rightarrow\hept{\begin{cases}18a^2-36b^2-9b=0\\3a^2-6b^2-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3a^2-6b^2=\frac{3}{2}b\\3a^2-6b^2=a\end{cases}\Leftrightarrow a=\frac{3}{2}b}\)

Thay \(a=\frac{3}{2}b\)vào \(3a^2-6b^2-a=0\)ta có: 

\(3.\frac{9}{4}b^2-6b^2-\frac{3}{2}b=0\Leftrightarrow27b^2-24b^2-6b=0\Leftrightarrow3b\left(b-2\right)=0\)

Ta có: b=0(loại) ; b=2(thoả mãn) . Vậy a=3. KL:...

13 tháng 10 2020

B2: \(GT\Rightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+\left(1+ab\right)^2=0\)

\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(1+ab\right)+\left(1+ab\right)^2=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-\left(1+ab\right)\right]^2=0\Rightarrow\left(a+b\right)^2-\left(1+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)^2=1+ab\Leftrightarrow\left|a+b\right|=\sqrt{1+ab}\in Q\)( vì a,b thuộc Q)

KL:....

21 tháng 12 2019

\(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự:

\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng lại:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ca}{2}\)

\(\Rightarrow VT\ge a+b+c\)

Mặt khác:

\(\frac{9}{a+b+c}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\Rightarrow9\le3\left(a+b+c\right)\Rightarrow a+b+c\ge3\)

Khi đó:

\(VT\ge a+b+c\ge3\left(đpcm\right)\)

Dấu "=" xảy ra tại \(a=b=c=1\)

15 tháng 4 2020

????????

7 tháng 8 2019

BĐT <=> \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)

\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)

\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)

Theo BĐT Svacxo:

\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+6}=1\)

Vậy ta có đpcm.

P/s: Đúng ko ta?

Áp dụng BĐT cô si với hai số không âm, Ta có: 

\(\left(a+b+c\right)^2=1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\forall b,c\ge0\)

\(\Rightarrow b+c\ge16abc\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}a+b+c=1\\b=c\\a=b+c\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)

Áp dụng BĐT Cô si với 2 số dương ta có: 

\(\frac{a}{b}+\frac{b}{a}\ge2,\frac{b}{c}+\frac{c}{b}\ge2,\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)(đúng) 

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(do a+b+c=1)

5 tháng 12 2016

Ta có

\(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(\Leftrightarrow\frac{2a}{\sqrt{ab+bc+ca+a^2}}+\frac{b}{\sqrt{ab+bc+ca+b^2}}+\frac{c}{\sqrt{ab+bc+ca+c^2}}\)

\(\Leftrightarrow2a.\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}+b.\frac{1}{\sqrt{\left(b+a\right)\left(b+c\right)}}+c.\frac{1}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\Leftrightarrow2a.\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}+2b.\frac{1}{\sqrt{\left(a+b\right).4.\left(b+c\right)}}+2c.\frac{1}{\sqrt{\left(a+c\right).4.\left(b+c\right)}}\)

\(\le\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{4\left(b+c\right)}+\frac{c}{a+c}+\frac{c}{4\left(b+c\right)}\)

\(=1+1+\frac{1}{4}=\frac{9}{4}\)

5 tháng 12 2016

Xem lại đề nhé

30 tháng 7 2018

trong câu hỏi tương tự cũng có đó, bạn vào tham khảo nha

Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:

\(\frac{1}{1-bc}\le\frac{1}{1-\frac{\left(b+c\right)^2}{4}}=\frac{4}{4-\left(b+c\right)^2}=1+\frac{\left(b+c\right)^2}{4-\left(b+c\right)^2}\)

               \(\le1+\frac{\left(b+c\right)^2}{4-2\left(b+c\right)^2}=1+\frac{\left(b+c\right)^2}{4\left(a^2+b^2+c^2\right)-2\left(b^2+c^2\right)}\)

               \(=1+\frac{\left(b+c\right)^2}{2\left[\left(a^2+b^2\right)+\left(a^2+c^2\right)\right]}\le1+\frac{b^2}{2\left(a^2+b^2\right)}+\frac{c^2}{2\left(b^2+c^2\right)}\)

Tương tự ta có:

\(\frac{1}{1-ca}\le1+\frac{c^2}{2\left(b^2+c^2\right)}+\frac{a^2}{2\left(b^2+a^2\right)}\)

\(\frac{1}{1-ab}\le1+\frac{a^2}{2\left(c^2+a^2\right)}+\frac{b^2}{2\left(c^2+b^2\right)}\)

Cộng theo vế ta được:

\(\frac{1}{1-bc}+\frac{1}{1-ca}+\frac{1}{1-ab}\le3+\frac{a^2+b^2}{2\left(a^2+b^2\right)}+\frac{b^2+c^2}{2\left(b^2+c^2\right)}+\frac{c^2+a^2}{2\left(c^2+a^2\right)}=\frac{9}{2}\)

Vậy BĐT đc c/m

8 tháng 11 2017

Ta có:

\(\frac{1}{1-ab}=1+\frac{ab}{1-ab}\le1+\frac{ab}{1-\frac{a^2+b^2}{2}}\)

\(=1+\frac{ab}{a^2+b^2+2c^2}\le1+\frac{ab}{\sqrt{\left(c^2+a^2\right)\left(b^2+c^2\right)}}\)

\(\le1+\frac{1}{2}\left(\frac{a^2}{c^2+a^2}+\frac{b^2}{b^2+c^2}\right)\left(1\right)\)

Tương tự ta có:

\(\hept{\begin{cases}\frac{1}{1-bc}\le1+\frac{1}{2}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{c^2+a^2}\right)\left(2\right)\\\frac{1}{1-ca}\le1+\frac{1}{2}\left(\frac{c^2}{b^2+c^2}+\frac{a^2}{c^2+a^2}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) 

\(\Rightarrow\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le3+\frac{1}{2}\left(\frac{a^2}{a^2+b^2}+\frac{a^2}{c^2+a^2}+\frac{b^2}{b^2+c^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{c^2+a^2}+\frac{c^2}{b^2+c^2}\right)\)

\(=3+\frac{1}{2}\left(1+1+1\right)=\frac{9}{2}\)