Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình có hai nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(3m-1\right)^2-4.\left(m+1\right)\left(2m-2\right)\ge0\\\Delta\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+9\ge0\\m\ne-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-3\right)^2\ge0\\m\ne1\end{matrix}\right.\)\(\Leftrightarrow m\ne1\).
Áp dụng định ly Viet:
\(x_1+x_2=-\dfrac{3m-1}{m+1}=3\)\(\Leftrightarrow3m-1=-3m-3\)\(\Leftrightarrow6m=-2\)\(\Leftrightarrow m=-\dfrac{1}{3}\).
Vậy \(m=-\dfrac{1}{3}\) là giá trị cần tìm.
để pt có 2 nghiệm phân biệt thì: đenta > 0
mà ddeenta = m2 - 6m - 7 > 0
giải ra ta đc: m<-1 hay m>7 (1)
áp dụng hệ thức vi-et đc x1 + x2 = m-1 và x1.x2= m+2
kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3
bđt trên (=) (x12+x22)/x12.x22 - 1 > 0
thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2 và m<-7/16
kết hợp vs (1) =) m<-1 và m khác -2
a/
\(x^3-2mx^2+2x^2-8x+8m-16=0\)
\(\Leftrightarrow\left(x^3+2x^2-8x-16\right)+m\left(-2x^2+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-8\right)-2m\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2-8-2m\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2mx+4m-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x^2-2mx+4m-8=0\left(1\right)\end{matrix}\right.\)
Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb khác -2
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-2\right)^2+4m+4m-8=0\\\Delta'=m^2-4m+8>0\end{matrix}\right.\) (luôn thỏa mãn)
Vậy pt có 3 nghiệm pb với mọi m
b/ Do vai trò của \(x_1;x_2;x_3\) hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x_1=-2\) và \(x_2;x_3\) là 2 nghiệm của (1)
\(\Rightarrow\left\{{}\begin{matrix}x_2+x_3=2m\\x_2x_3=4m-8\end{matrix}\right.\) (2)
\(\left(-2\right)^2+\left(x_2+x_3\right)^2-2x_2x_3=5\left(-2+x_2+x_3\right)-4\) (3)
Thế (2) vào (3) là xong
Để phương trình có hai nghiệm phân biệt âm :
\(\left\{{}\begin{matrix}\Delta>0\\S< 0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2-9>0\left(1\right)\\\dfrac{-2\left(m^2-1\right)}{9.2}< 0\left(2\right)\\\dfrac{1}{9}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2>9\\m^2-1>0\end{matrix}\right.\)
Với \(m>2\) thì \(\left(m^2-1\right)^2-9>\left(2^2-1\right)^2-9=0\) nên (1) thỏa mãn.
Với \(m>2\) thì \(m^2-1>2^2-1=3>0\) nên (2) thỏa mãn.
Vậy \(m>2\) phương trình có hai nghiệm âm.
Để phương trình có hai nghiệm thì:
\(\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2-9\ge0\\9\ne0\end{matrix}\right.\)
Áp dụng định lý Viet ta được:
\(x_1+x_2=\dfrac{-2\left(m^2-1\right)}{9}=4\) \(\Leftrightarrow m^2-1=-18\)
\(\Leftrightarrow m^2=-17\) (loại)
Vậy không có giá trị m thỏa mãn.
1: \(\text{Δ}=\left(-m\right)^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: m-2<0
=>m<2
2: \(\Leftrightarrow\dfrac{x_1^2+1}{x_1}\cdot\dfrac{x_2^2+1}{x_2}=9\)
\(\Leftrightarrow\dfrac{\left(x_1\cdot x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=9\)
\(\Leftrightarrow\dfrac{\left(m-2\right)^2+\left(-m\right)^2-2\left(m-2\right)+1}{m-2}=9\)
\(\Leftrightarrow m^2-4m+4+m^2-2m+4+1=9m-18\)
\(\Leftrightarrow2m^2-6m+9-9m+18=0\)
=>2m^2-15m+27=0
hay \(m\in\varnothing\)
3: =>m=0
Sửa đề: \(\dfrac{x_1x_2}{x_1+x_2}=-\dfrac{m^2}{2}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow\left(m-3\right)^2+4\left(2m^2-3m\right)>0\\ \Leftrightarrow9m^2-18m+9>0\\ \Leftrightarrow9\left(m-1\right)^2>0\left(\text{luôn đúng},\forall m\ne1\right)\)
Do đó PT có 2 nghiệm phân biệt với mọi \(m\ne1\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=3-m\\x_1x_2=3m-2m^2\end{matrix}\right.\)
Ta có \(\dfrac{x_1x_2}{x_1+x_2}=-\dfrac{m^2}{2}\Leftrightarrow\dfrac{3m-2m^2}{3-m}=-\dfrac{m^2}{2}\)
\(\Leftrightarrow4m^2-12m=3m^2-m^3\\ \Leftrightarrow m^3+m^2-12m=0\\ \Leftrightarrow m\left(m^2+4m-3m-12\right)=0\\ \Leftrightarrow m\left(m+4\right)\left(m-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\\m=3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=0\\m=-4\\m=3\end{matrix}\right.\) thỏa yêu cầu đề