Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b)\)
\(4n-3⋮3n-2\)
\(\Leftrightarrow3\left(4n-3\right)⋮3n-2\)
\(\Leftrightarrow12n-9⋮3n-2\)
\(\Leftrightarrow\left(12n-8\right)-1⋮3n-2\)
\(\Leftrightarrow4\left(3n-2\right)-1⋮3n-2\)
\(\Leftrightarrow1⋮3n-2\)
\(\Leftrightarrow3n-2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow3n\in\left\{1;3\right\}\)
Mà: \(3n⋮3\)
\(\Leftrightarrow3n=3\)
\(\Leftrightarrow n=1\)
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Ta có :
\(a+b=c+d\)
\(\Rightarrow\)\(a=-b+c+d\)
Thay \(a=-b+c+d\) vào \(ab+1=cd\) ta được :
\(\left(-b+c+d\right)b+1=cd\)
\(\Leftrightarrow\)\(-b^2+bc+bd+1=cd\)
\(\Leftrightarrow\)\(\left(-b^2+bd\right)+\left(bc-cd\right)=-1\)
\(\Leftrightarrow\)\(-b\left(b-d\right)+c\left(b-d\right)=-1\)
\(\Leftrightarrow\)\(\left(c-b\right)\left(b-d\right)=-1\)
Vì \(a,b,c,d\inℤ\) nên có 2 trường hợp :
Trường hợp 1 :
\(\hept{\begin{cases}c-b=1\\b-d=-1\end{cases}\Leftrightarrow\hept{\begin{cases}c=b+1\\b+1=d\end{cases}\Leftrightarrow}\hept{\begin{cases}c=b+1\\c=d\end{cases}}}\)
\(\Rightarrow\)\(c=d\)
Trường hợp 2 :
\(\hept{\begin{cases}c-b=-1\\b-d=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=c+1\\b=d+1\end{cases}}}\)
\(\Rightarrow\)\(c+1=d+1\)
\(\Rightarrow\)\(c=d\)
Vậy \(c=d\)
Chúc bạn học tốt ~