Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì cát tuyến chung \(BCD\perp AB\)tại B (gt) => \(\widehat{CBA}=\widehat{DBA}=90^o\)=> CA và DA lần lượt là đường kính của đt (O) và (O')
=> A,O,C thẳng hàng và D, O', A thẳng hàng
Xét đt (O) có: \(\widehat{CKA}=\widehat{CKD}=90^o\)(góc nội tiếp chắn nửa đường tròn) \([Do\overline{D,A,K}\left(gt\right)\Rightarrow\widehat{CKA}=\widehat{CKD}]\)
Xét đt (O') có: \(\widehat{AID}=\widehat{CID}=90^o\)(góc nội tiếp chắn nửa đường tròn) \([Do\overline{C,A,I}\left(gt\right)\Rightarrow\widehat{AID}=\widehat{CID}]\)
Xét tứ giác CKID có: \(\widehat{CKD}=\widehat{CID}=90^o\)=> tứ giác CKID nội tiếp một đt (Dhnb)
a, ta có: góc AEI = 90o (góc nội tiếp chắn nửa đường tròn) => EI\(\perp\)AK tại E và AH\(\perp\)KI tại H (gt)
chúng cắt nhau tại B => B là trực tâm. => KB vuông góc AI (đpm)
b, ta có: góc ECA = góc EBA ( cùng chắn cung AE) mà góc EBA= góc HBI (hai góc đối đỉnh) (4)
ta lại có: góc HBI + góc HIB =90o (tổng 3 góc trong một tam giác) (3)
=> góc ECA + góc HIB = 90o (1)
Xét tam giác CEI vuông tại E nên: góc EKI + góc HIB =90o (2)
Từ (1) và (2) => góc ECA = góc EKI
=> tứ giác EKNC là tứ giác nội tiếp ) (đpcm)
c,Ta có: góc EAB + góc EBA = 90o và từ (3), (4) => góc EAB = góc BIH
mà góc EAB = góc BEN ( bằng 1/2 sđ cung EB)
=> góc BIH = góc BEN=> tam giác ENI cân tại N=> EN =NI (*)
Tương tự, ta có góc K + góc KAH = 90o
góc KEN + góc NEB =90o mà góc KAH = góc NEB (c.m.t) => góc KEN = góc K => tam giác KNE cân tại N => NK = NE (**)
từ (*) và (**) => NK = NI hay N là trung điểm KI ( đpcm)