K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

A B C O O D P G E H F O 1 2 3 K

Gọi DA cắt (O3( tại G khác A, GP cắt FD tại K. Giao điểm thứ hai của BD và (BAF) là H.

Ta có ^APG = ^AEG = ^AFK => Tứ giác APKF nội tiếp => K thuộc (BAF)

Dễ thấy: ^AFK = ^AED = ^ABH = ^AFH => (AK(BAF) = (AH(BAF) => ^KBA = ^HFE.

Chứng minh được \(\Delta\)FDE ~ \(\Delta\)ADB (g.g) suy ra \(\frac{AB}{FE}=\frac{AD}{DF}=\frac{BD}{DF}=\frac{BK}{FH}\)

Từ đây có \(\Delta\)AKB ~ \(\Delta\)EHF (c.g.c) cho nên ^BAK = ^FEH = ^BFK. Do ^AFK = ^AED nên ^AFB = ^DEH

Kết hợp với ^HDE = 1800 - ^BDE = 1800 - ^BAE = ^BAF dẫn đến \(\Delta\)DEH ~ \(\Delta\)AFB (g.g)

=> \(\frac{HE}{BF}=\frac{DE}{AF}\). Lại có \(\Delta\)DGE ~ \(\Delta\)ACF (g.g) => \(\frac{DE}{AF}=\frac{GE}{CF}\). Suy ra \(\frac{HE}{BF}=\frac{GE}{CF}\)(*)

Mặt khác ta có biến đổi góc ^GEH = ^GED - ^DEH = ^AFC - ^AFB = ^CFB. Từ đó kết hợp với (*) ta thu được:

\(\Delta\)EGH ~ \(\Delta\)FCB (c.g.c) => ^EGH = ^FCB. Mà ^EGD = ^ACF nên ^DGH = ^ACB.

Khi đó dễ dàng chỉ ra \(\Delta\)ABC ~ \(\Delta\)DGH (g.g) => \(\Delta\)DGH cân tại D => ^DGH = ^DHG

Ta thấy ^DGP = ^BAP = ^DGH => Tứ giác PGHD nội tiếp. Từ đây ^DPK = ^DHG = ^DGH = ^DPH

Do đó PD là phân giác ^KPH. Chú ý ^APG = ^AEG = ^AFD = ^ABH = ^APH => PA là phân giác ^HPG

Mà ^KPH và ^HPG kề bù nên PA vuông góc PD hay ^APD = 900 (đpcm).

30 tháng 9 2019

tớ xin chúc mừng nguyễn tất đạt nhá

1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\) 2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC. a) Tính AB, AC ? b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH. c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C)...
Đọc tiếp

1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\)

2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC.

a) Tính AB, AC ?

b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH.

c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C) bán kính 6cm.

3. Vẽ đồ thị hàm số:

a) Vẽ đồ thị hàm số y=2x (d1) & y=-2x+4 (d2).

b) Xác định tọa độ giao điểm I của (d1) & (d2).

4. Cho hai đường tròn (O;R) và (O';R') tiếp xúc ngoài nhau tại A, (R>R'), đường thẳng OO' cắt (O) và (O') tại B và C. Qua trung điểm M của BC vẽ dây DE⊥BC.

a) Chứng minh: BECD là hình thoi.

b) Đoạn DC cắt (O') tại F. Chứng minh: A, E, F thẳng hàng.

c) Chứng minh: MF là tiếp tuyến của đường tròn.

5. Rút gọn:

a) \(5\sqrt{\dfrac{1}{5}}-\dfrac{1}{\sqrt{5}-2}\)

b) \(\sqrt{3-2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

c) \(A=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}+2\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}-2\right)\)

d) \(B=\dfrac{\sqrt{x^2}+\sqrt{9x^2}+\sqrt{45x^2}}{\sqrt{x}-\sqrt{16x}-\sqrt{25x}-\sqrt{180x}}\left(x>0\right)\)

6. Cho hàm số \(y=-\dfrac{x}{2}\) (d1) và hàm số \(y=2x-5\) (d2).

a) Xác định tọa độ giao điểm của (d1) & (d2). Vẽ (d1) & (d2) trên cùng mp tọa độ.

b) Cho đường thẳng (d3): y=ax+b. Xác định a và b để (d3) // (d1) và cắt (d2) tại điểm trên trục tung.

7. Từ A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB & AC với (O).

a) Chứng minh: OA là đường trung trực của BC.

b) OA cắt BC tại H. Chứng minh: HO.HA=HB.HC .

c) Đoạn OA cắt đường thẳng (O) tại I. Chứng minh: AB, AC là các tiếp tuyến của đường tròn (I) bán kính IH.

8.Cho \(A\left(1;-2\right),B\left(-2;7\right),C\left(\dfrac{-1}{3\sqrt{2}+3};\sqrt{2}\right)\)

a) Viết phương trình đường thẳng AB.

b) Chứng minh: ba điểm A, B, C thẳng hàng.

9. Cho đường tròn (O) đường kính AB=2R, dây CD⊥AB tại trung điểm H của OB.

a) Chứng minh: OCBD là hình thoi.

b) Tính CD theo R.

c) Chứng minh: ΔACD đều.

d) Gọi E là điểm đối xứng của A qua H. Chứng minh: EC & ED là các tiếp tuyến của đường tròn (O).

10. Tìm ĐKXĐ và rút gọn biểu thức:

\(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)^2\)

11. Trong mp tọa độ Oxy, cho 4 điểm: \(A\left(-2;0\right),B\left(0;1\right),C\left(1;0\right),D\left(0;-2\right)\)

a) Chứng minh: A và B thuộc đường thẳng d1: \(y=\dfrac{1}{2}x+1\)

b) Viết phương trình đường thẳng d2 đi qua C và D.

c) Vẽ d1 và d2, xác định tọa độ giao điểm I của chúng.

12. Cho nửa đường tròn (O) đường kính AB và M∈(O). Vẽ MH⊥AB, đường tròn đường kính MH cắt (O) tại N và cắt MA, MB tại E và F.

a) MEHF là hình gì?

b) Chứng minh: EF là tiếp tuyến của đường tròn ngoại tiếp ΔAEH.

c) MN cắt AB tại S. Chứng minh: MN.MS=ME.MA .

0