Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{AOD}=110^0\),\(\widehat{BOC}=110^0\),\(\widehat{BOD}=70^0\)
a, Trong ba tia OA, OM, ON tia OM nằm giữa hai tia OA và ON
b, Ta có \(\widehat{AOB}=\widehat{AOM}+\widehat{MON}+\widehat{BON}\)
\(=40^o+30^o+50^o\)
\(=120^o\)
Nhớ k cho mình nhé
C D B A O Ta có góc AOC-góc BOC= 60 độ mà góc AOC+ góc COB= 180 độ
=> Góc AOC=\(\frac{180+60}{2}=120\)(độ)
và Góc COB=180 độ -góc AOC =180-120=60độ
Ta có góc AOC= góc BOD= 120 độ (đối đỉnh)
góc COB= góc AOD =60 độ (đối đỉnh)
Vậy........
giải
b O a m n
a) Vì góc aOb là góc bẹt nên:
\(\widehat{aOm}+\widehat{bOm}=180^0\)
\(\Rightarrow\widehat{bOm}=180^0-\widehat{aOm}=180^0-100^0=80^0\)
b) Vì \(\widehat{bOn}=40^0;\widehat{bOm}=80^0\) nên \(\widehat{bOn}< \widehat{bOm}\left(40^0< 80^0\right)\)
Do đó On nằm giữa hai tia Om và Ob : (1)
\(\widehat{bOn}+\widehat{nOm}=\widehat{bOm}\)
\(\Rightarrow\widehat{nOm}=\widehat{bOm}-\widehat{bOn}=80^0-40^0=40^0\)
\(\Rightarrow\widehat{bOn}=\widehat{nOm}\left(=40^0\right)\) (2)
Từ (1) và (2) suy ra On là tia phân giác \(\widehat{bOm}\)
Vẽ hình ko chính xác mấy, thông cảm nhé!
\(\widehat{aOm}=\widehat{bOn}\)(hai goc doi dinh)