K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: (d1): y=mx-y=2

\(\Leftrightarrow y=mx-2\)

\(\Leftrightarrow y+2=mx\)

Tọa độ điểm B cố định là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}y+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=0\end{matrix}\right.\)

Vậy: (d1) luôn đi qua B(0;-2)

Ta có: (d2): (2-m)x+y=m

\(\Leftrightarrow y=mx-2x+m\)

\(\Leftrightarrow y+2x=m\left(x+1\right)\)

Tọa độ điểm C cố định là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}x+1=0\\y+2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2x=-2\cdot\left(-1\right)=2\end{matrix}\right.\)

Vậy: (d2) luôn đi qua điểm C(-1;2)

5 tháng 7 2021

Gọi \(B\left(x_B;y_B\right)\) là điểm cố định mà \(\left(d_1\right)\) đi qua

\(\Rightarrow mx_B-y_B=2\Rightarrow mx_B-\left(y_B+2\right)=0\Rightarrow\left\{{}\begin{matrix}x_B=0\\y_B=-2\end{matrix}\right.\)

\(\Rightarrow B\left(0;-2\right)\Rightarrow\left(d_1\right)\) luôn đi qua điểm \(B\left(0;-2\right)\) cố định 

Gọi \(C\left(x_C;y_C\right)\) là điểm cố định mà \(\left(d_2\right)\) đi qua

\(\Rightarrow\left(2-m\right)x_C+y_C=m\Rightarrow2x_C-mx_C-m+y_C=0\)

\(\Rightarrow-m\left(x_C+1\right)+2x_C+y_C=0\Rightarrow\left\{{}\begin{matrix}x_C=-1\\2x_C+y_X=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_C=-1\\y_C=2\end{matrix}\right.\)

\(\Rightarrow C\left(-1;2\right)\Rightarrow\left(d_2\right)\) luôn đi qua điểm \(C\left(-1;2\right)\) cố định

b: y=mx-2x+3

Điểm mà (d) luôn đi qua có tọa độ là:

x=0 và y=-2*0+3=3

30 tháng 9 2018

c) Giả sử đường thẳng  d 1  luôn đi qua một điểm cố định ( x 1 ; y 1  ) với mọi giá trị của m.

⇒  y 1 = m x 1  + 2m - 1 với mọi m

⇔ m( x 1  + 2) - 1 -  y 1 = 0 với mọi m

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy điểm cố định mà d 1  luôn đi qua với mọi giá trị của m là (-2; -1).

28 tháng 2 2017

a)

\(\left(d1\right):y=mx+m-3=m\left(x+1\right)-3\Rightarrow\left\{\begin{matrix}x=-1\\y=-3\end{matrix}\right.\) với mọi m:

ĐIểm cố dịnh là A(-1,-3)

\(\left(d1\right):y=\dfrac{1}{m}x+\dfrac{1-m}{m}=\dfrac{1}{m}\left(x+1\right)-1\Rightarrow voi..x=-1...thi...y=-1...voi..\forall m\ne0\)

ĐIểm cố định B(-1,-1)

a: Để d1//d2 thì \(\left\{{}\begin{matrix}3m^2+1-4m=0\\-m-5< >m^2-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(m-1\right)=0\\m^2-9+m+5< >0\end{matrix}\right.\)

=>m=1/3 hoặc m=1

b: Để hai đường cắt nhau thì (3m-1)(m-1)<>0

hay \(m\notin\left\{\dfrac{1}{3};1\right\}\)