Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) P(x) = 5x4 + 2x2 - 3x3 - 4x4+ 3x3 - x + 5
= ( 5x4 - 4x4 ) + ( 3x3 - 3x3 ) + 2x2 -x + 5
= x4 +2x2 - x +5
Q(x) = x - 5x3 - x2 - x4 + 5x3 - x2 + 3x - 1
= -x4 + ( 5x3 - 5x3 ) - ( x2 + x2 ) + 3x -1
= -x4 - 2x2 + 3x -1
b) P(x) + Q(x) = (x4 + 2x2 - x +5) + (-x4 - 2x2 + 3x -1)
= x4 + 2x2 - x +5 - x4 - 2x2 + 3x -1
= ( x4 -x4 ) + ( 2x2 - 2x2 ) + ( 3x - x ) + ( 5 - 1 )
= 2x + 4
c) Để đa thức có nghiệm thì A(x) = 0
hay P(x) + Q(x) = 0
2x + 4 = 0
2x = -4
x = -4 : 2 = -2
Vậy x = -2 là nghiệm của đa thức A(x)
tick cho mk nha các bn
a )\(P\left(x\right)=5x^4+2x^2-3x^3-4x^4+3x^3-x+5\)
\(=x^4+2x^2-x+5\).
\(Q\left(x\right)=x-5x^3-x^2-x^4+5x^3-x^2+3x-1\)
\(=-x^4-2x^2+4x-1\)
b ) \(P\left(x\right)+Q\left(x\right)=x^4+2x^2-x+5-x^4-2x^2+4x-1=3x+4\)
c ) \(Ax=3x+4=0\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
Vậy nghiệm của \(A\left(x\right)=-\dfrac{4}{3}\)
\(P\left(x\right)=-4x^4+3x^3+4x^2+3x+6\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=-x^5-2x^4+x^3+7x^2+2x+\frac{25}{4}\)
\(P\left(x\right)-Q\left(x\right)=x^5-6x^4+5x^3+x^2+4x+\frac{23}{4}\)
P(x) = -4x^4 + (5x^3 - 2x^3) + 4x^2 + 3x + 6
= -4x^4 + 3x^3 + 4x^2 + 3x + 6
Q(x) = -x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4
P(x) + Q(x) = (-4x^4 + 3x^3 + 4x^2 + 3x + 6) + (-x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4)
= -4x^4 + 3x^3 + 4x^2 + 3x + 6 - x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4
= -x^5 - (4x^4 - 2x^4) + (3x^3 - 2x^3) + (4x^2 + 3x^2) + (3x - x) + (6 + 1/4)
= -x^5 - 2x^4 + x^3 + 7x^2 + 2x + 25/4
P(x) - Q(x) = (-4x^4 + 3x^3 + 4x^2 + 3x + 6) - (-x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4)
= -4x^4 + 3x^3 + 4x^2 + 3x + 6 + x^5 - 2x^4 + 2x^3 - 3x^2 + x - 1/4
= x^5 - (4x^4 + 2x^4) + (3x^3 + 2x^3) + (4x^2 - 3x^2) + (3x + x) + (6 - 1/4)
= x^5 - 6x^4 + 5x^3 + x^2 + 4x + 23/4
Chúc bạn học tốt
p(x)=x2+5x4-3x3+x2+4x4+3x3-x+5
p(x)=9x4+2x2-x+5
=> p(-1)=9.(-1)4+2(-1)2-(-1)+5=9+2+1+5=17
ta có;
q(x)=x-5x3-x2-x4+4x3-x2+3x-1
q(x)=-x4-x3-2x2+3x-1
=> q(-1)=-(-1)4-(-1)3-2(-1)2+3(-1)-1
q(-1)=-1+1-2+3-1=0
=> -1 là nghiệm của q(x) chứ không phải là nghiệm của p(x)
=> bạn kt lại đề nha
Bạn thay 1 vào x sau đó được kết quả Q(x)=0=> 1 là nghiệm của Q(x)
Còn khi thay 1 vào x thì P(x)=-3 nên 1 ko phải là nghiệm của P(x)
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
\(P\left(x\right)+Q\left(x\right)-R\left(x\right)=2x^3+6x^2-5x+x^3-4x^3+3-5x^2+3x^3-x+4\)
\(=\left(2x^3+x^3-4x^3+3x^3\right)+\left(6x^2-5x^2\right)-\left(5x+x\right)+\left(3+4\right)\)
\(=2x^3+x^2-6x+7\)
Vậy \(P\left(x\right)+Q\left(x\right)-R\left(x\right)=2x^3+x^2-6x+7\)
`P(x)=x^2+5x^4-3x^2+x^2+4x^4+3x^3-x+5`
`=(5x^4+4x^4)+3x^3+(x^2-3x^2+x^2)-x+5`
`=9x^4+3x^3-x^2-x-5`
`Q(x)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1`
`=-x^4+(4x^3-5x^3)-(x^2+x^2)+(x+3x)-1`
`=-x^4-x^3+4x-1`
`P(x)+Q(x)=9x^4+3x^3-x^2-x-5-x^4-x^3+4x-1`
`=(9x^4-x^4)+(3x^3-x^3)-x^2-(x-4x)-(5+1)`
`=8x^4+2x^3-x^2-5x-6`
`P(x)-Q(x)=9x^4+3x^3-x^2-x-5+x^4+x^3-4x+1`
`=(9x^4+x^4)+(3x^3+x^3)-x^2-(x+4x)-(5-1)`
`=10x^4+4x^3-x^2-5x-4`