Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phương trình \(x^3-x-1=0\). Giả sử x0 là một nghiệm của phương trình đã cho.
a)Chứng minh rằng x0>0
b)Tính giá trị biểu thức \(P=\frac{x_0^2-1}{x_{0^3}}.\sqrt{2x^2_0+3x_0+2}\)
\(f\left(x_0\right)=ax_0^2+bx_0+c=0\)
\(g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\left(đpcm\right)\)
\(f\left(x_1\right)=g\left(x_1\right)\Leftrightarrow ax_1+b=cx_1+d\Leftrightarrow\left(a-c\right)x_1=d-b\) (1)
\(f\left(x_2\right)=g\left(x_2\right)\Leftrightarrow ax_2+b=cx_2+d\Leftrightarrow\left(a-c\right)x_2=d-b\)
\(\Rightarrow\left(a-c\right)x_1=\left(a-c\right)x_2\)
\(\Leftrightarrow a-c=0\) (do \(x_1\ne x_2\))
\(\Leftrightarrow a=c\)
Thế vào (1) \(\Rightarrow0.x_1=d-b\Rightarrow d=b\)
\(\Rightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\) \(\Rightarrow f\left(x\right)=g\left(x\right)=ax+b\) với mọi x
Bài này quá dễ
\(g\left(\frac{1}{x0}\right)=c\left(\frac{1}{x0}\right)^2+b\frac{1}{x0}+a=\frac{ax0^2+bx0+x}{x0^{ }}=\frac{f\left(x0\right)}{x0^{ }}=0\)
2) Ta có: \(\frac{x_1}{y_2}=\frac{x_2}{y_1}\Rightarrow\frac{x_1^2}{y_2^2}=\frac{x_2^2}{y_1^2}=\frac{x_1^2+x_2^2}{y_1^2+y_2^2}=\frac{2^2+3^2}{52}=\frac{1}{4}\)
\(\Rightarrow\frac{x_1^2}{y_2^2}=\frac{1}{4}\Rightarrow y_2^2=16\Rightarrow\)\(\orbr{\begin{cases}y_2=-4\\y_2=4\end{cases}\Rightarrow}\)\(\orbr{\begin{cases}y_1=-6\\y_1=6\end{cases}}\)
=> KL....
I2x+3I=x+2
TH1: Nếu \(x\le-\frac{3}{2}\)(*), =>I2x+3I=-2x-3
PT: -2x-3=x+2 <=> x=\(-\frac{5}{3}\)(tm (*))
TH2: Nếu \(x>-\frac{3}{2}\)(**), => I2x+3I=2x+3
PT: 2x+3=x+2 => x=-1 (tm (**))
Vậy x=...