K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

batngo

25 tháng 11 2018

Ta có \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{x+3\sqrt{x}+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{x+8\sqrt{x}-3\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+8\right)-3\left(\sqrt{x}+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)

Vậy P=A.B=\(\dfrac{7}{\sqrt{x}+8}.\dfrac{\sqrt{x}+8}{\sqrt{x}+3}=\dfrac{7}{\sqrt{x}+3}\)

Vậy để P có giá trị là số nguyên thì \(\sqrt{x}+3\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)

Ta có \(\sqrt{x}+3\ge3\)

Vậy \(\sqrt{x}+3=7\)\(\Leftrightarrow\)\(\sqrt{x}=4\)\(\Leftrightarrow x=16\left(tm\right)\)

Vậy x=16 thì P=A.B có giá trị là số nguyên

5 tháng 3 2022

em tham khảo

undefined

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:

a.

\(B=\frac{2\sqrt{x}(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-2x}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{x-3\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)

b.

\(P=AB=\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}+3}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)

Để $P<0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+3}<0$

Mà $\sqrt{x}+3>0$ nên $\sqrt{x}-2<0$

$\Leftrightarrow 0< x< 4$

Kết hợp với ĐKXĐ suy ra $0< x< 4$

Mà $x$ nguyên nên $x\in left\{1; 2; 3\right\}$

 

a: \(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-2x}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

b: \(P=A\cdot B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)

Để |P|>P thì P<0

=>căn x-2<0

=>0<x<4

=>x=1

a: Khi x=25 thì \(A=\dfrac{7}{5+8}=\dfrac{7}{13}\)

b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{x-9}\)

\(=\dfrac{x+5\sqrt{x}-24}{x-9}=\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{x-9}=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)

c: P=A*B

\(=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\cdot\dfrac{7}{\sqrt{x}+8}=\dfrac{7}{\sqrt{x}+3}\)

P là số nguyên

=>căn x+3 thuộc Ư(7)

=>căn x+3=7

=>x=16

16 tháng 5 2021

`B=sqrtx/(sqrtx+3)+(2sqrtx)/(\sqrtx-3)-(3x+9)/(x-9)(x>0,x ne 9)`
`=(x-3sqrtx+2x+6sqrtx-3x-9)/(x-9)`
`=(3sqrtx-9)/(x-9)`
`=(3(sqrtx-3))/((sqrtx-3)(sqrtx+3))`
`=3/(sqrtx+3)`
`P=A.B=3/x`
`Px+3\sqrt{x-5}=x-2sqrtx+7(x>=5)`
`<=>3+3\sqrt{x-5}=x-2sqrtx+7`
`<=>x-2sqrtx+4-3\sqrt{x-5}=0`
`<=>2x-4sqrtx+8-6sqrt{x-5}=0`
`<=>x-4sqrtx+4+x-5-6sqrt{x-5}+9=0`
`<=>(sqrtx-2)^2+(\sqrt{x-5}-3)^2=0`
Dấu "=" xảy ra khi $\begin{cases}x=4\\x=14\\\end{cases}(l)$
Vậy khong có giá trị của x thể pt có nghiệm

15 tháng 10 2023

\(P=A\cdot B\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\cdot\dfrac{2\sqrt{x}+6+x-3\sqrt{x}+3-5\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)}\cdot\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}-3\right)^2}=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)

Để P nguyên thì 

\(2\sqrt{x}⋮\sqrt{x}+3\)

\(\Leftrightarrow2\sqrt{x}+6-6⋮\sqrt{x}+3\)

=>\(\sqrt{x}+3\inƯ\left(-6\right)\)

=>\(\sqrt{x}+3\in\left\{3;6\right\}\)

=>\(\sqrt{x}\in\left\{0;3\right\}\)

=>\(x\in\left\{0;9\right\}\)

Kết hợp ĐKXĐ, ta được: x=0

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 8:

\(M=1+\frac{4}{\sqrt{x}+1}\)

Để $M$ nguyên thì $\frac{4}{\sqrt{x}+1}$ nguyên 

Đặt $\frac{4}{\sqrt{x}+1}=t$ với $t$ là số nguyên dương 

$\Rightarrow \sqrt{x}+1=\frac{4}{t}$

$\sqrt{x}=\frac{4}{t}-1=\frac{4-t}{t}\geq 0$

$\Rightarrow 4-t\geq 0\Rightarrow t\leq 4$

Mà $t$ nguyên dương suy ra $t=1;2;3;4$

Kéo theo $x=9; 1; \frac{1}{9}; 0$

Kết hợp đkxđ nên $x=0; \frac{1}{9};9$

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 9:

$P=1+\frac{5}{\sqrt{x}+2}$

Để $P$ nguyên thì $\frac{5}{\sqrt{x}+2}$ nguyên 

Đặt $\frac{5}{\sqrt{x}+2}=t$ với $t\in\mathbb{Z}^+$

$\Leftrightarrow \sqrt{x}+2=\frac{5}{t}$

$\Leftrightarrow \sqrt{x}=\frac{5-2t}{t}\geq 0$

Với $t>0\Rightarrow 5-2t\geq 0$

$\Leftrightarrow t\leq \frac{5}{2}$

Vì $t$ nguyên dương suy ra $t=1;2$

$\Rightarrow x=9; \frac{1}{4}$ (thỏa đkxđ)