K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 5 2018

Lời giải:

\(1< a\Rightarrow a+1< 2a(1)\)

\(b< c\Rightarrow 2b< b+c(2)\)

\(b+c< a+1\) do đó kết hợp với \((1);(2)\) suy ra:

\(2b< b+c< a+1< 2a\)

\(\Rightarrow b< a\)

Ta có đpcm.

12 tháng 5 2018

Ta có 1<a

=> a+1<2a

Ta có b<c

=> 2b<b+c

Mà b+c<a+1 ( theo gt cho )

Mà a+1<2a ; 2b<b+c

=> 2b<2a

=> b<a

=> dpcm

12 tháng 5 2019

a+b<a+1

=>b<1

mà a>1

=> a>b

8 tháng 6 2016

Vì a,b,c,d,m,n thuộc Z   và  a < b < c < d < m < n nên ta có : 

                          a + b < 2a ( 1 )

                         c + d < 2c   (2)

                         m + n < 2m ( 3)

Cộng vế với vế các bđt (1), (2) và (3) ta được :  a + b + c + d + m + n > 2 ( a + c  + m )

                                                                                 => \(\frac{1}{a+b+c+d+m+n}< \frac{1}{2\left(a+c+m\right)}\)

                                                                                =>\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{a+c+m}{2.\left(a+c+m\right)}=\frac{1}{2}\)   ( đpcm ) 

8 tháng 6 2016

xin lỗi mình đánh nhầm dấu ">" thành "<"  mình xin đính chính lại nhé : a + c > 2a (1 )

                                                                                                                               c + d > 2c  (2)

                                                                                                                             m + n > 2m ( 3)

có chút sai xót chỗ này thành thật xin lỗi !

5 tháng 4 2017

Ta có : \(0\le a\le b\le1\Rightarrow\hept{\begin{cases}a-1\le0\\b-1\le0\end{cases}}\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\)

\(\Rightarrow ab+1\ge a+b\Rightarrow\frac{1}{ab+1}\le\frac{1}{a+b}\)

\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(c\ge0\right)\)

Mà \(\frac{c}{a+b}\le\frac{2c}{a+b+c}\left(c\ge0\right)\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

CM tương tự ta cũng có : \(\hept{\begin{cases}\frac{b}{ac+1}\le\frac{2b}{a+b+c}\\\frac{a}{bc+1}\le\frac{2a}{a+b+c}\end{cases}}\)

Cộng vế với vế ta được :

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (ĐPCM)

Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

Cho abc là số dương thỏa mãn 0<a<b<c<1

Chứng minh rằng \(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<2

Từ giả thiết ta có:

(1-b) (1-c)>0 và 1 -(b+c)+bc>0 và bc+1>b+c và \(\frac{a}{bc+1}\)<\(\frac{a}{b+c}\)<\(\frac{a}{a+b}\)(1)

Tương tự ta cũng có :\(\frac{b}{ac+1}\)<\(\frac{b}{a+c}\)<\(\frac{b}{a+b}\)(2);\(\frac{c}{ab+1}\)<c<1(3)

Cộng (1),(2),(3) theo vế ta được :\(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<\(\frac{a+b}{a+b}\)+1=2

Vậy \(\frac{a}{bc+1}\)+\(\frac{b}{ac+1}\)+\(\frac{c}{ab+1}\)<2

1 tháng 3 2018

Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left(1-a\right)\left(1-b\right)\ge0\)

\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)

Tiếp tục chứng minh.

\(\hept{\begin{cases}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{cases}}\)

Cộng theo vế: \(2\left(ab+1\right)\ge a+b+c\)

Trở lại bài toán: \(\frac{c}{ab+1}=\frac{2c}{2\left(ab+1\right)}\le\frac{2c}{a+b+c}\)

Tương tự rồi cộng theo vế suy ra đpcm

1 tháng 3 2018

Ta có: \(a\le1\Rightarrow a-1\le0\)

\(b\le1\Rightarrow b-1\le0\)

Ta có: \(\left(a-1\right)\left(b-1\right)\ge0\)( mới chứng minh ở trên đó )

\(\Rightarrow ab-a-b+1\ge0\Leftrightarrow ab+1\ge a+b\Leftrightarrow2ab+1\ge ab\ge a+b\)

\(\Rightarrow2ab+2\ge a+b+c\Leftrightarrow\frac{1}{2}ab+2\ge\frac{1}{a+b+c}+\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)

Ta cũng chứng minh tương tự với \(\frac{b}{ac+1}\le\frac{2b}{a+b+c};\frac{a}{bc+1}\le\frac{2a}{a+b+c}\)

Từ đây bạn tự làm tiếp rồi suy ra đpcm nha