K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)

\(\Rightarrow\left(ab+ac+bc\right)\left(a+b+c\right)=abc\)

\(\Rightarrow a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc=âbc\)

\(\Rightarrow\left(a^2b+ab^2\right)+\left(ac^2+bc^2\right)+\left(a^2c+2abc+b^2c\right)=0\)

\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)

\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+\left(ac+bc\right)\left(a+b\right)=0\)

\(\Rightarrow\left(a+b\right)\left(ab+c^2+ac+bc\right)=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a=-b\\\frac{b=-c}{a=-c}\end{cases}}\)

Từ đó: P = 0.

Mình giải hơi tắt. Mong bạn hiểu bài.

Chúc bạn học tốt.

12 tháng 8 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+abc+abc+b^2c+bc^2+a^2c+abc+ac^2-abc=0\)

\(\Leftrightarrow ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc\right)+ac\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ac\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

\(\circledast Với:a=-b\) , ta có :

\(P=\left(-b+b\right)\left(b^3+c^3\right)\left(c^5+a^5\right)=0\)

\(\circledast Với:b=-c\) , ta có :

\(P=\left(a+b\right)\left(b^3-b^3\right)\left(c^5+a^5\right)=0\)

\(\circledast Với:c=-a\) , ta có :

\(P=\left(a+b\right)\left(b^3+c^3\right)\left(-a^5+a^5\right)=0\)

KL..............

21 tháng 1 2018

a)        \(a+\frac{1}{a}=3\)

\(\Leftrightarrow\)\(\left(a+\frac{1}{a}\right)^2=9\)

\(\Leftrightarrow\)\(a^2+2+\frac{1}{a^2}=9\)

\(\Leftrightarrow\)\(a^2+\frac{1}{a^2}=7\)

  Ta có:      \(\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}\right)=3.7\)

\(\Leftrightarrow\)\(a^3+\frac{1}{a}+a+\frac{1}{a^3}=21\)

\(\Leftrightarrow\)\(a^3+\frac{1}{a^3}=21-3=18\)

Ta lại có:    \(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=7.18\)

\(\Leftrightarrow\)\(a^5+\frac{1}{a}+a+\frac{1}{a^5}=126\)

\(\Leftrightarrow\)\(a^5+\frac{1}{a^5}=126-3=123\)

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)