K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

giả sử các tổng trên lẻ 

=>|a1-a10| lẻ 

|a2-a9| lẻ

..........

mà các tổng trên có thừa số |a5-a5|=0

vô lí 

vậy các tỏng trên chẵn

Bởi vì cứ 10 số tự nhiên liên tiếp là lại có một số chia 

hết cho 10

17 tháng 5 2017

Bạn đọc kỹ đề đi, người ta bảo là 10 số bất kỳ chứ có phải là liên tiếp đâu

7 tháng 6 2017

Nguyễn Thanh Tùng trả lời rồi

19 tháng 10 2016

Câu hỏi của Lê Minh Đạo - Toán lớp 6 - Học toán với OnlineMath

19 tháng 10 2016

Câu hỏi của Lê Minh Đạo - Toán lớp 6 - Học toán với OnlineMath

9 tháng 2 2016

Lập dãy số . Đặt B1 = a1. B2 = a1 + a2 . B3 = a1 + a2 + a3 ................................... B10 = a1 + a2 + ... + a10 .

Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm). Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.  

7 tháng 2 2016

Lập dãy số . Đặt B1 = a1. B2 = a1 + a2 . B3 = a1 + a2 + a3 ................................... B10 = a1 + a2 + ... + a10 . Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm). Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.  

7 tháng 2 2016

nói chung là ko hỉu

thôi bạn ăn tết thôi để chuyện học hành sang vài ngày

6 tháng 9 2017

Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 ...

Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : ...

+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10

(đpcm) ...

+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng

giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) ...

Sm = a1+a2+ ... + a(m) ..

.Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) ...

---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 ...

---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)

29 tháng 3 2021

Đặt S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10

Xét 1010 số S1;S2;S3;...:S10S1;S2;S3;...:S10 ta có 2 trường hợp:

(∗)(∗) Nếu có 1 số SkSk nào có tận cùng =0(Sk=a1;a2;...;a10;k=1→10)=0(Sk=a1;a2;...;a10;k=1→10)

⇒⇒ Tổng kk số a1;a2;...;ak⋮10a1;a2;...;ak⋮10

(∗)(∗) Nếu không có số nào trong 10 số S1;S2;...;S10S1;S2;...;S10 tận cùng bằng 00

⇒⇒ Chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau. Ta gọi 2 số đó là Sm;Sn(1≤m<n≤10)Sm;Sn(1≤m<n≤10)

Sm=a1+a2+...+amSm=a1+a2+...+am

Sn=a1+a2+...+am+am+1+...+anSn=a1+a2+...+am+am+1+...+an

⇒Sn−Sm=am+1+am+2+...+an⇒Sn−Sm=am+1+am+2+...+an tận cùng là 0

⇒n−m=am+1+am+2+...+an⋮10⇒n−m=am+1+am+2+...+an⋮10

Vậy a1+a2+...+a10⋮10a1+a2+...+a10⋮10 (Đpcm)

15 tháng 11 2015

vào câu hỏi tương tự nhé bạn