K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

a, Xét \(\Delta ABH\)và \(\Delta ABD\)có :

      \(AH=AD\left(gt\right)\)

     \(\widehat{BAH}=\widehat{BAD}=90^o\)( vì \(\Delta ABC\)vuông tại A )

      \(BA\)chung

Vậy \(\Delta ABH=\Delta ABD\left(c.g.c\right)\)

\(\Rightarrow BH=BD\)( hai cạnh tương ứng )

\(\Rightarrow\Delta DBH\)cân tại B

b,Ta có:

   AC = 2AB ( gt )

   2AD = 2CD = AC ( vì D là trung điểm của AC )

Suy ra AB = AD = CD = 2 cm.

Lại có :

    2AD = CD hay 2 x 2 = AC

                      nên AC = 4 cm

Xét \(\Delta ABC\)có : 

   \(BC^2=AB^2+AC^2\)

hay \(BC^2=2^2+4^2\)

       \(BC^2=4+16\)

        \(BC^2=20\Rightarrow BC=\sqrt{20}\)( cm )

Vậy \(BC=\sqrt{20}cm\)

      Mình làm đến đây thôi 

11 tháng 11 2016

A B C D a)

ta có D là giao điểm của cung tròn tâm B với cung tròn tâm C=>BD là bán kính của cung tròn tâm B và CD là bán kính của cung tròn tâm C

ta có: DB là bán kính của cung tròn tâm B mà AC cũng là bán kính của cung tròn tâm B=> AC=BD

CM tương tự ta có: CD=AB

xét \(\Delta ABC\)\(\Delta DCB\) có:

BD=AC(cmt)

AB=DC(cmt)

BC(chung)

\(\Rightarrow\Delta ABC=\Delta DCB\left(c.c.c\right)\)

=>\(\widehat{BAC}=\widehat{BDC}=80^o\)

b)

theo câu a, ta có:

\(\Delta ABC=\Delta DCB\Rightarrow\widehat{ABC}=\widehat{BCD}\)

=>CD//AB(2 góc slt)

 

11 tháng 11 2016

A B C D Nếu bạn xem ko đc hình thì xem hình này cũng được, khi nãy mk vẽ quên căn

ở câu a, mk ko quen cách diễn đạt lớp 9 cho lắm nên thông cảm nhé

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

19 tháng 11 2019

1) a/ Xét ΔAKB và ΔAKC ta có:

AB = AC (GT)

BK = CK (GT)

AK cạnh chung

=> ΔAKB = ΔAKC (c - c - c)

b/ Có ΔAKB = ΔAKC (câu a)

=> \(\widehat{AKB}=\widehat{AKC}\) (2 góc tương ứng)

\(\widehat{AKB}\)\(\widehat{AKC}\) là 2 góc kề bù

=> \(\widehat{AKB}=\widehat{AKC}\) = 1800 : 2 = 900

=> AK ⊥ BC

c/ Đường vuông góc với BC tại C không thể cắt AB

c/

19 tháng 11 2019

Bài 1:

a) Xét 2 \(\Delta\) \(AKB\)\(AKC\) có:

\(AB=AC\left(gt\right)\)

\(KB=KC\) (vì K là trung điểm của \(BC\))

Cạnh AK chung

=> \(\Delta AKB=\Delta AKC\left(c-c-c\right).\)

b) Theo câu a) ta có \(\Delta AKB=\Delta AKC.\)

=> \(\widehat{AKB}=\widehat{AKC}\) (2 góc tương ứng).

Ta có: \(\widehat{AKB}+\widehat{AKC}=180^0\) (vì 2 góc kề bù).

\(\widehat{AKB}=\widehat{AKC}\left(cmt\right)\)

=> \(2.\widehat{AKB}=180^0\)

=> \(\widehat{AKB}=180^0:2\)

=> \(\widehat{AKB}=90^0.\)

=> \(\widehat{AKB}=\widehat{AKC}=90^0\)

=> \(AK\perp BC.\)

c) Vì:

\(AK\perp BC\left(cmt\right)\)

\(EC\perp BC\) (do cách vẽ)

=> \(EC\) // \(AK\) (từ vuông góc đến song song) (đpcm).

Chúc bạn học tốt!

12 tháng 12 2016

AI GIÚP MÌNH VỚI! khocroi

15 tháng 12 2016

MÌNH NHẦM

CÂU a LÀ CHỨNG MINH TAM GIÁC EIB=AIE

29 tháng 10 2019

B A C D K H I

a ) Xét \(\Delta AHB\) vuông tại H ta có :

\(\widehat{HBA}+\widehat{HAB}=90^o\) ( hai góc phụ nhau )

\(\widehat{HAB}=90^o-\widehat{HBA}=90^o-60^o=30^o\)

Vậy \(\widehat{HAB}=60^o\)

b ) Xét \(\Delta AHI\) và \(\Delta ADI\)có :

AH = AD (gt)

IH=ID (gt)

AI cạnh chung 

\(\Rightarrow\Delta AHI=\Delta ADI\left(c.c.c\right)\)

Suy ra \(\widehat{HIA}=\widehat{DIA}\) ( hai góc tương ứng )

Mà \(\widehat{HIA}+\widehat{DIA}=180^o\) ( 2gocs kề bùy )

\(\Rightarrow\widehat{HIA}=\widehat{DIA}=90^o\)

Do đó \(AI\perp HD\left(đpcm\right)\)

c ) Vì  \(\Delta AHI=ADI\) ( cm câu b )

\(\Rightarrow\widehat{HAK}=\widehat{DAK}\) ( 2 góc tương ứng )

Xét \(\Delta AHK\) và \(\Delta ADK\) có ;

AH = AD (gt)

\(\widehat{HAK}=\widehat{DAK}\left(cmt\right)\)

AK cạn chung

\(\Rightarrow\Delta AHK=\Delta ADK\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHK}=\widehat{ADK}=90^o\) ( 2 góc tương ứng )

\(\Rightarrow AD\perp AC\)

Mà \(BA\perp AC\left(\Delta ABC\perp A\right)\)

AD//AB ( đpcm)