Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/Gọi chiều dài,rộng lần lượt là a;b (m;a,b>0)
Từ đề bài,suy ra a + b = 28 m
Suy ra a = 28 - b.
Suy ra diện tích là b(28-b)
Theo đề bài,ta có phương trình: \(\left(b-2\right)\left(28-b+4\right)=b\left(28-b\right)+8\)
\(\Leftrightarrow\left(b-2\right)\left(32-b\right)=-b^2+28b+8\)
\(\Leftrightarrow-b^2+34b-64=-b^2+28b+8\)
\(\Leftrightarrow34b-64=28b+8\)
\(\Leftrightarrow6b-72=0\Leftrightarrow b=12\)
Suy ra chiều dài là: 28 - b = 28 - 12 = 16
Vậy ...
Gọi CD khu vườn là a (m)
CR khu vườn là b (m) đk: a;b >0
Theo bài, ta có:
\(\left\{{}\begin{matrix}2\left(a+b\right)=56\\\left(a+3\right)\left(b-1\right)=ab+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=28\\3b-a=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=19\left(tm\right)\\b=9\left(tm\right)\end{matrix}\right.\)
Vậy.....
Gọi \(x\left(m\right)\) là chiều dài của mảnh vườn \(\left(x>0\right)\)
Nữa chu vi là: \(112:2=56\left(m\right)\)
Khi đó chiều rộng: \(56-x\left(m\right)\)
Chiều dài sau khi tăng: \(x+3\left(m\right)\)
Chiều rộng sau khi giảm: \(56-x-1=55-x\left(m\right)\)
Theo đề bài ta có:
\(x\left(56-x\right)+5=\left(x+3\right)\left(55-x\right)\)
\(\Leftrightarrow x=40\left(m\right)\left(tm\right)\)
Chiều rộng là: \(56-40=16\left(m\right)\)
Gọi \(x\left(m\right)\left(x>0\right)\) là chiều dài
Nửa chu vi là \(112:2=56\left(m\right)\)
\(56-x\left(m\right)\) là chiều rộng
Theo đề, ta có pt :
\(\left(x+3\right)\left(56-x-1\right)=x\left(56-x\right)+5\)
\(\Leftrightarrow56x-x^2-x+168-3x-3=56x-x^2+5\)
\(\Leftrightarrow-4x=-160\)
\(\Leftrightarrow x=40\left(tmdk\right)\)
Vậy chiều dài là 40m, chiều rộng là \(56-40=16m\)
Gọi chiều rộng ban đầu là x ( x> 0; m )
=> Chiều dài ban đầu là: 3x ( m )
Diện tích ban đầu là: x . 3x = 3x^2 ( m^2 )
Tăng chiều rộng lên 2m ta được: x + 2 ( m )
Giảm chiều dài đi 4 m ta được: 3x - 4 (m )
Diện tích mới là: ( x + 2 ) ( 3x - 4 ) m^2 '
Vì diện tích tăng thêm 28m^2 nên ta có phương trình:
3x^2 + 28 = ( x + 2 ) ( 3x - 4 )
Giải ra ta tìm được: x = 18 m
Vậy diện tích ban đầu của miếng đất là: 3.18^2 = 972 ( m^2)
Gọi chiều rộng miếng đất HCN là: x
Chiều dài miếng đất HCN là: 3x
Diện tích miếng đất là: x.3x = 3x2
Theo đề ra, ta có phương trình:
(x + 2)(3x - 4) = 3x2 + 28
<=> 3x2 + 2x - 8 = 3x2 + 28
<=> 3x2 - 3x2 + 2x = 28 + 8
<=> 2x = 36
<=> x = 18
Vậy chiều rộng mảnh đất là 18 m, chiều dài mảnh đất là 18.3 = 54 m
Diện tích mảnh đất ban đầu là: 18.54 = 972 m2
refer
+ Nửa chu vi của khu vườn là 56 : 2 = 28 (m)
+ Gọi chiều dài, chiều rộng lần lượt là a, b (m) (a, b >0)
+ Ta có: a + b = 28 (m)
=> a = 28 -b
=> S = b(28 - b)
+ Ta có phương trình: (b - 4)(28 - b + 4) = b(28 - b) + 8
<=> (b - 4)(32 - b) = -b22 + 28b + 8
<=> -b22 + 36b - 128 = -b22 + 28b + 8
<=> -b22 + b22 + 36b - 28b = 8 + 128
<=> 8b = 136
<=> b = 17
=> Chiều dài là: 28 - b <=> 28 - 17 = 11 (m)
Vậy chiều dài và chiều rộng của khu vườn lần lượt là: 11 (m), 17 (m).
gọi dài=x , rộng=x-4 -->x(x-4)=S -->x^2-4x=S(1)
lại có (x+5)(x-4-2)=S+21 -->x^2-x-30=S+21 (2)
trừ (2) cho (1) -->3x=51 -->x=17 -->dài=17 rộng=13
-->chu vi = (17+13)*2=60m
Mình làm bằng cách lớp 9 nhé :v
Gọi chiều dài và chiều rộng lần lượt là x , y ( x,y > 0 ; x,y thuộc N )
Chiều dài gấp 3 lần chiều rộng : \(x=3y\left(1\right)\)
Tăng chiều rộng 2m và giảm chiều dài 4m thì diện tích tăng thêm 28m2 :
\(\left(x-4\right)\left(y+2\right)=xy+28\left(2\right)\)
Từ 1 và 2 ta suy ra được hệ phương trình sau :
\(\hept{\begin{cases}x=3y\left(3\right)\\\left(x-4\right)\left(y+2\right)=xy+28\left(4\right)\end{cases}}\)
\(\left(4\right)< =>\left(x-4\right)\left(y+2\right)=xy+28\)
\(< =>\left(3y-4\right)\left(y+2\right)=3y^2+28\)
\(< =>3y^2+6y-4y-8=3y^2+28\)
\(< =>\left(3y^2+2y-8\right)-\left(3y^2+28\right)=0\)
\(< =>2y-8-28=0< =>2y-36=0\)
\(< =>2y=36< =>y=\frac{36}{2}=18\left(5\right)\)
Thay 5 vào 3 ta được : \(x=3y< =>x=18.3=54\)
Vậy chiều dài và chiều rộng lần lượt là : 54,18