Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : A=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)\)
A=\(-\left(x-\frac{1}{2}\right)^2-\frac{1}{4}< \)hoặc bằng -1/4 Vậy A max =1/4 khi x=1/2
C=x2-2x-5
=x2-5x+3x-15+10
=x(x-5)+3(x-5)+10
=(x+3)(x-5)+10<=10
DBXRK x=5
P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025
Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.
Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.
Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.
1/ B = (x+y)((x+y)2 - 3xy)+(x+y)2 - 2xy = 2 - 5xy = 2 - 5x(1-x)=5x2 - 5x + 2 = (x√5 - √5 /2)2 +3/4 >= 3/4
Đạt GTNN là 3/4 khi x=y=1/2
2/ P = xy = x(6-x)=-x2 +6x = 9 - (x-3)2 <=9
GTLN là 9 khi x=y=3
a) A=5+16-(x^2+8x+16)=21-(x+4)^2
Amax=21 khi x=-4
b)B=(x^2-2x+1)+(y^2-4y+4)+2=(x-1)^2+(y-2)^2+2
Bmin=2 khi x=1; y=2
c)C=(x-1)(x+2)(x+3)(x+6)=(x^2+5x-6)(x^2+5x+6)=(x^2+5x)^2-36
Cmin =-36 khi x=0
a)
gồm bình phường (a^2+2ab+b^2)=(a+b)^2 (*)
5-8x-x^2=-(x^2+8x-5) đây đâu trừ ra ngoài
(....) biến đổi cho giống biểu thức trên (*)
-(x^2+2.4.x+4^2) ....(ở đây a=x; b=4)
xong như vậy ta đã thêm 4^2=16 vào biểu thức mang dấu(-)
vậy ta công trả lại 16
-(x^2+2.4.x+4^2)+16+5 { còn 5 nguyên ban đầu )
=21-(x+4)^2
{x+4}^2 luôn dương=> -(x+4)^2 luon am
=> 21-(x+4)^2 \(\ge\)21
GTNN=21