K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2016

Theo đề bài ta có:

a<b; c<d;e<f nên cộng vế với vế ta được:

a+c+e<b+d+f

<=>a+c+e+a+c+e<b+d+f+a+c+e

<=>2(a+c+e)<a+b+c+d+e+f

<=>\(\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)(ĐPCM)

18 tháng 6 2017

Ta có: a < b => 2a < a + b       (1)

          c < d => 2c < c + d     (2)

          e < f => 2e < e + f      (3)

Cộng ba vế (1),(2),(3) lại ta được:

2a + 2c + 2e < a + b + c + d + e + f

=> 2(a + c + e)  < a + b + c + d + e + f

=> \(\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\) (đpcm)

14 tháng 6 2019

\(\hept{\begin{cases}a< b\\c< d\\e< f\end{cases}}\Rightarrow a+c+e< b+d+f\)

                   \(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)

                 => dpcm

14 tháng 6 2019

Ta có : \(a< b< c< d< e< f\)nên :

\(a+b+c+d+e+f>a+a+c+c+e+e=2\left(a+c+e\right)\)

\(\Rightarrow\frac{a+c+e}{a+b+c+d+e+f}< \frac{a+c+e}{2\left(a+c+e\right)}=\frac{1}{2}\left(đpcm\right).\)

Câu 1: Có 4 giá trị

Câu 3: \(A\le\dfrac{10}{5}=2\)

15 tháng 10 2016

Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(a;b;m>0\right)\)

Ta có:

\(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}< \frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}\)

                                                    \(< \frac{2a+2b+2c+2d}{a+b+c+d}\)

                                                    \(< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\)

                                                    \(< 2\left(đpcm\right)\)

 

15 tháng 10 2016

Giỏi quá!

5 tháng 2 2017

(a-b)(c-d)(e-f)x=(b-a)(d-c)(f-e)

=>(a-b)(c-d)(e-f)x = -(a-b)(c-d)(e-f)

=>x=(a-b)(c-d)(e-f)/-(a-b)(c-d)(e-f)=(-1)

5 tháng 2 2017

x  = 1 nha