Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+....+\frac{1}{6561}\)
\(\Rightarrow\)\(3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+....+\frac{1}{2187}\)
\(\Rightarrow\)\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{2187}\right)-\left(\frac{1}{3}+\frac{1}{9}+....+\frac{1}{6561}\right)\)
\(\Rightarrow\)\(2A=1-\frac{1}{6561}=\frac{6560}{6561}\)
\(\Rightarrow\)\(A=\frac{3280}{6561}\)
1,
để A thuộc Z thì
x+5 chia het cho x+3
co x+3 chia het cho x+3
=>(x+5)-(x+3)chia het cho x+3
hay2 chia het cho x+3
=>x+3 thuộc ước của 2
=>x+3 thuoc {1,-1,2,-2}
ta co bang
x+3 | 1 | -1 | 2 | -2 |
x | -2 | -4 | -1 | -5 |
vay de A thuoc Z thi x thuoc {-2,-4,-1,-2}
a, \(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}\)
\(=\dfrac{32}{99}\)
Vậy \(M=\dfrac{32}{99}\)
b, Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2012^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2011.2012}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)
\(=1-\dfrac{1}{2012}< 1\) (1)
Do mỗi phân số đều lớn hơn 0 nên \(A>0\) (2)
Từ (1), (2) \(\Rightarrow0< A< 1\)
\(\Rightarrow A\notin N\left(đpcm\right)\)
Vậy...
a, \(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{2}{97}-\dfrac{2}{99}\\ =\dfrac{1}{3}-\dfrac{2}{99}=\dfrac{31}{99}\)
Đề có vấn đề A= 1/30 +...
1/30 + 1/42 +1/56 +1/72+1/90+1/110+1/132
= 1/5x6+1/6x7+1/7x8+1/8x9+1/9x10+1/10x11+1/11x12
=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12
= 1/5 -1/12
=7/60
MK lam bai nay roi nen mk nghi de sai !
Bài 1:
a) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
Quy đồng \(VP\) ta được:
\(VP=\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow VP=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)
\(\Rightarrow VP=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
\(\Rightarrow VP=VT\)
Vậy \(\forall n\in Z,n>0\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (Đpcm)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
Bài 3:
a) \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
b) A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{9}\)
\(=\dfrac{7}{18}\)
B=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(=\dfrac{1}{5}-\dfrac{1}{12}\)
\(=\dfrac{7}{60}\)
Câu 1:
\(A\in Z\Rightarrow6n-1⋮3n+2\)
\(\Rightarrow6n+4-5⋮3n+2\)
\(\Rightarrow2\left(3n+2\right)-5⋮3n+2\)
\(\Rightarrow5⋮3n+2\)
đến đây tự lm nốt nhé
1. Để A có giá trị nguyên thì \(6n-1⋮3n+2\)
Ta có: \(\left\{{}\begin{matrix}6n-1⋮3n+2\\3n+2⋮3n+2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6n-1⋮3n+2\\2\left(3n+2\right)⋮3n+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n-1⋮3n+2\\6n+4⋮3n+2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6n-1⋮3n+2\\6n-1+5⋮3n+2\end{matrix}\right.\)
\(\Rightarrow\left(6n-1+5\right)-\left(6n-1\right)⋮3n+2\)
\(\Rightarrow5⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(5\right)\)
\(\Rightarrow3n+2\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow3n\in\left\{-7;\pm3;-1;\right\}\)
\(\Rightarrow n\in\left\{\pm1\right\}\)
Vậy để \(A\in Z\) thì n nhận các giá trị là: \(\pm1\)
Ta có công thức 1 + 2 + ... + n = n(n+1)/2
\(S=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{2018.2019}{2}}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2019}\right)=...\)tự tính
\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}\)
\(=\frac{1}{2.3:2}+\frac{1}{3.4:2}+...+\frac{1}{2018.2019:2}=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2018.2019}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2018}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2019}\right)=2.\frac{2017}{4032}=\frac{2017}{2019}\)
Dung giải hay nhỉ? Lâu nay mới on =))))
\(A=\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{2.1}\)
\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\left(\frac{99}{99}-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\frac{98}{99}=\frac{1}{9900}-\frac{9800}{9900}=\frac{-9799}{9900}\)
Vậy \(A=\frac{-9799}{9900}\).