K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

a/ M = |3x+8,4|-14,2

Ta thấy:\(\left|3x+8,4\right|\ge0\)

\(\Rightarrow\left|3x+8,4\right|-14,2\ge0-14,2=-14,2\)

\(\Rightarrow M\ge0\)

Dấu = khi x=-2,8

Vậy Mmin=-2,8 khi x=-2,8

b/cách lm mk chưa nghĩ ra nhưng ra

Nmin=26,5 khi x=-1,5

c)P =|x-2012|+|x-2011|

áp dụng Bđt |a|+|b|>=|a+b| ta có:

\(\left|x-2012\right|+\left|x-2011\right|\ge\left|x-2012+2011-x\right|=1\)

\(\Rightarrow P\ge1\)

Dấu = khi \(x\in\left[2011;2012\right]\)

Vậy Pmin=1 khi \(x\in\left[2011;2012\right]\)

21 tháng 7 2016

Tks Thắq nhìu nké

1 tháng 2 2017

TC: M min <=>3X+8,4 Min=> MinM=-14,2 với 3X+8,4=0 => x=-2,8

N Min Cũng tương tự vì Trị tuyệt đói luôn dương =>min N=17,5 tương úng khi x=0.75;y=-1.5

P. Ta có : [x-2012]+[x-2011]=[x-2012]+[2011-x] (áp dụng tính chất Giá trị tuyệt đói)

=>MinP  =x-2012+2011-x  =-1

18 tháng 8 2020

Bài 2 : 

a) \(A=3,7+\left|4,3-x\right|\ge3,7\)

Min A = 3,7 \(\Leftrightarrow x=4,3\)

b) \(B=\left|3x+8,4\right|-14\ge-14\)

Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)

c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)

d) \(D=\left|x-2018\right|+\left|x-2017\right|\)

\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)

Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)

\(\Leftrightarrow2017\le x\le2018\)

24 tháng 8 2021

\(A=3,7+\left|4,3-x\right|\)

Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

\(B=\left|3x+8,4\right|-14\)

Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)

\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

\(D=\left|x-2018\right|+\left|x-2017\right|\)

\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có

\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)

3 tháng 12 2018

\(H=\left|x-3\right|+\left|4+x\right|\)

\(H=\left|3-x\right|+\left|4+x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(H\ge\left|3-x+4+x\right|=\left|7\right|=7\)

Dấu "=" xảy ra khi ( có 2 trường hợp )

TH1: \(\hept{\begin{cases}3-x>0\\4+x>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}\Rightarrow}-3< x< 3\left(Chon\right)}\)

TH2: \(\hept{\begin{cases}3-x< 0\\4+x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -4\end{cases}\Rightarrow}3< x< -4\left(Loai\right)}\)

Vậy Hmin = 7 khi và chỉ khi -3 < x < 3

3 tháng 12 2018

Ta có:

\(\hept{\begin{cases}\left|x-3\right|=\left|3-x\right|\ge3-x\\\left|4+x\right|\ge4+x\end{cases}\forall x}\)

\(H=\left|x-3\right|+\left|4+x\right|\)

\(\Rightarrow H=\left|3-x\right|+\left|4+x\right|\)

\(\Rightarrow H\ge3-x+4+x=7\)

\(H=7\Leftrightarrow\hept{\begin{cases}\left|3-x\right|=3-x\\\left|4+x\right|=4+x\end{cases}\Leftrightarrow}\hept{\begin{cases}3-x\ge0\\4+x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Leftrightarrow-4\le x\le3}\)

Vậy \(H_{min}=7\Leftrightarrow-4\le x\le3\)

15 tháng 4 2019

a) \(x^3-2x^2+x=0\)

\(\Leftrightarrow x\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy....

15 tháng 4 2019

b) \(-x^4-x^2-3=0\)

\(\Leftrightarrow x^4+x^2+3=0\)

\(\Leftrightarrow\left(x^2\right)^2+2\cdot x^2\cdot\frac{1}{2}+\frac{1}{4}+\frac{11}{4}=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\frac{-11}{4}\)( vô lý )

Đa thức vô nghiệm

16 tháng 4 2019

a) Đặt \(A=x^2-2x+5\)

                \(=\left(x-1\right)^2+4\)

Ta thấy \(\left(x-1\right)^2\ge0\forall x\)

  \(\Rightarrow\left(x-1\right)^2+4\ge0+4\forall x\)

 hay \(A\ge4\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\)

                         \(\Leftrightarrow x=1\)

Vậy Min A=4 \(\Leftrightarrow x=1\)

16 tháng 4 2019

a , \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)

Dấu " = " xảy ra khi x - 1 = 0 hay x = 1

Vậy GTNN là 4 khi x = 1 .

b , \(9-4x-x^2=-\left(x^2+4x-9\right)=-\left(x^2+4x+4-13\right)=-\left(x+2\right)^2+13=13-\left(x+2\right)^2\le13\)

Dấu " = " xảy ra khi x + 2 = 0 hay x = -2 .

Vậy GTLN là 13 khi x = -2 .

c , mik ko bt làm

14 tháng 7 2018

a) Vì \(\left|4,3-x\right|\ge0\Rightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu "=" xảy ra <=> \(\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

Vậy Amin = 3,7 khi và chỉ khi x = 4,3

b) Vì \(\left|3x+8,4\right|\ge0\Rightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu "=" xảy ra <=> \(\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=-2,8\)

Vậy BMin = -14 khi và chỉ khi x = -2,8

c) Vì \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\Rightarrow B=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu bằng xảy ra <=> \(\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}}\)

Vậy CMin = 17,5 khi và chỉ khi x = 3/4 và y = -1,5

d) D = |x-2018| + |x-2017| = |x-2018| + |2017-x| lớn hơn hoặc bằng |x-2018+2017-x| = |-1|=1

Dấu "=" xảy ra khi và chỉ khi (x-2018).(2017-x) lớn hơn hoặc bằng 0

              (Tự giải ra)

Vậy DMin = 1 khi và chỉ khi ...