K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-8x^2-9}-\frac{3x+6}{x^2+5x+6}-\frac{2}{x-3}=0\)

\(\Leftrightarrow\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{x^4-8x^2+16-25}-\frac{3\left(x+2\right)}{x^2+2x+3x+6}-\frac{2}{x-3}=0\)

\(\Leftrightarrow\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x^4-8x^2+16\right)-5^2}-\frac{3\left(x+2\right)}{x\left(x+2\right)+3\left(x+2\right)}-\frac{2}{x-3}=0\)

\(\Leftrightarrow\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x^2-4\right)^2-5^2}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\)

\(\Leftrightarrow\frac{13-x}{x+3}-\frac{3}{x+3}+\frac{6\left(x^2+1\right)}{\left(x^2+1\right)\left(x^2-9\right)}-\frac{2}{x-3}=0\)

\(\Leftrightarrow\frac{10-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x-3}=0\)

\(\Leftrightarrow\frac{\left(10-x\right)\left(x-3\right)+6-2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow10x-30-x^2+3x+6-2x-6=0\)

\(\Leftrightarrow-x^2+11x-30=0\)

\(\Leftrightarrow-x^2+5x+6x-30=0\)

\(\Leftrightarrow-x\left(x-5\right)+6\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(-x+6\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x-5=0\\-x+6=0\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=5\\x=6\end{matrix}\right.\)

Vậy x=5 ;x=6

22 tháng 2 2017

Phương trình này k có nghiệm

(A Trọng ns thế)

3 tháng 7 2017

1.Với \(x-1\ge0\Rightarrow x\ge1\)

\(\Rightarrow x^2-3x+2+x-1=0\Rightarrow x^2-2x+1=0\)

\(\Rightarrow\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)

Với \(x-1< 0\Rightarrow x< 1\)

\(\Leftrightarrow x^2-3x+2-x+1=0\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}\left(l\right)}\)

Vậy x=1

2.\(\frac{x+2}{x-2}-\frac{1}{x}-\frac{2}{x\left(x-2\right)}=0\)

ĐK \(x\ne0\)\(x\ne2\)

\(\Leftrightarrow\frac{x\left(x+2\right)-\left(x-2\right)-2}{x\left(x-2\right)}=0\Rightarrow x^2+2x-x+2-2=0\)

\(\Rightarrow x^2+x=0\Rightarrow x\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-1\left(tm\right)\end{cases}}\)

Vậy x=-1

4 tháng 6 2018

1. \(x^2-3x+2\) + / x - 1 / = 0 ( 1)

+) Với : x ≥ 1 , ta có :

( 1) ⇔ x2 - 3x + 2 + x - 1 = 0

⇔ x2 - 2x + 1 = 0

⇔ ( x - 1)2 = 0

⇔ x = 1 ( TM ĐK )

+) Với : x < 1 , ta có :

( 1) ⇔ x2 - 3x + 2 + 1 - x = 0

⇔ x2 - 4x + 3 = 0

⇔ x2 - x - 3x + 3 = 0

⇔ x( x - 1) - 3( x - 1) = 0

⇔ ( x - 1)( x - 3) = 0

⇔ x = 1 ( KTM ) hoặc : x = 3 ( KTM )

KL.......

3. \(\dfrac{x+2}{x-2}-\dfrac{1}{x}-\dfrac{2}{x\left(x-2\right)}=0\) ( x # 2 ; x # 0)

\(\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=0\)

⇔ x2 + 2x + 2 - x - 2 = 0

⇔ x2 + x = 0

⇔ x( x + 1) = 0

⇔ x = 0 ( KTM) hoặc : x = -1 ( TM )

KL....

11 tháng 4 2017

\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{6}{2x}+\dfrac{6}{y}=\dfrac{1}{4}\)

\(\Leftrightarrow6\left(\dfrac{1}{2x}+\dfrac{1}{y}\right)=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{2x}+\dfrac{1}{y}=\dfrac{1}{24}^{\left(1\right)}\)

Lại có: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}^{\left(2\right)}\)

Lấy (2) trừ (1) ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{2x}-\dfrac{1}{y}=\dfrac{1}{16}-\dfrac{1}{24}\)

\(\Leftrightarrow\dfrac{2-1}{2x}=\dfrac{1}{48}\)

\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{48}\)

=> 2x = 48

<=> x = 24

Thay x = 24 vào (2) ta có:

\(\dfrac{1}{24}+\dfrac{1}{y}=\dfrac{1}{16}\)

\(\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{48}\)

=> y = 48

Vậy ...

11 tháng 4 2017

Ta có: \(\dfrac{3}{x}\) + \(\dfrac{6}{y}\) = \(\dfrac{1}{4}\)

<=> 3(\(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) ) = \(\dfrac{1}{4}\)

<=> \(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) = \(\dfrac{1}{12}\) (1)

Mặt khác: \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) = \(\dfrac{1}{16}\) (2)

Trừ (2) cho (1) vế theo vế ta được:

\(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) - \(\dfrac{1}{x}\) - \(\dfrac{1}{y}\) = \(\dfrac{1}{12}\) - \(\dfrac{1}{16}\)

<=> \(\dfrac{1}{y}\) = \(\dfrac{1}{48}\) <=> y = 48

Thay y =48 vào (2) ta có: \(\dfrac{1}{x}\) + \(\dfrac{1}{48}\) = \(\dfrac{1}{16}\)

<=> \(\dfrac{1}{x}\) = \(\dfrac{1}{24}\) <=> x = 24

Vậy x =24 ; y =48

23 tháng 1 2017

Đại số lớp 8Mk nghĩ là ntn

24 tháng 1 2017

cảm ơn bạn

3 tháng 7 2017

1.A=\(\frac{x^4-2x^2+1}{x^3-3x-2}\)

A có nghĩa \(\Leftrightarrow x^3-3x-2\ne0\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

2 .A = \(\frac{x^4-2x^2+1}{x^3-3x-2}\)=\(\frac{\left(x^2-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)

A<1\(\Rightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Rightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)

\(\Rightarrow\frac{x^2-3x+3}{x-2}< 0\Rightarrow x-2< 0\)vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy x<2 thỏa mãn yêu cầu A<1

23 tháng 11 2019

biểu thức nào?

biểu thức đâu?

biểu thức ÙwÚ

23 tháng 11 2019

máy lỗi

15 tháng 5 2016

\(\frac{1}{x}\)+\(\frac{1}{y}\)=\(\frac{1}{24}\)<=>\(\frac{24y}{24xy}\)+\(\frac{24x}{24xy}\)=\(\frac{xy}{24xy}\)

<=> 24y +24x=xy<=> (24y-xy) -(576-24x)+576=0

<=> y(24-x) -24(24-x)=-576

<=> (24-x)(y-24)=-576=-576.1=1.(-576)=(-24).24=24.(-24)=12.(-48)=48.(-12)=....

và lần lượt cho 24-x và y-24 = các kết quả kia và chỉ lấy những giá trị là số tự nhiên

 

12 tháng 7 2023

Mày nhìn cái chóa j

29 tháng 11 2016

Ta có :

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+....+\frac{1}{\left(x+5\right)\left(x+6\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+....+\frac{1}{x+5}-\frac{1}{x+6}\)

\(=\frac{1}{x}-\frac{1}{x+6}\)

\(=\frac{6}{x\left(x+6\right)}\)

1 tháng 8 2017

Ta có : 

\(\Rightarrow2\left(5x-2\right)=3\left(5-3x\right)\)

\(\Leftrightarrow10x-4=15-9x\)

\(\Leftrightarrow10x+9x=15+4\)

=> 19x = 19

=> x = 1

1 tháng 8 2017

Ta có : 

\(\Leftrightarrow\frac{10x+3}{12}=\frac{9}{9}+\frac{6+8x}{9}\)

\(\Leftrightarrow\frac{10x+3}{12}=\frac{15+8x}{9}\)

=> (10x + 3)9 = (15 + 8x).12

=> 90x + 27 = 180 + 96x

=> 90x - 96x = 180 - 27

=> -6x = 153

=> -x = 25,5

=> x = -25,5

Bài 1 : phân tích đa thức thành nhân tử.3x2 + 2x – 1x3 + 6x2 + 11x + 6x4 + 2x2 – 3ab + ac +b2 + 2bc + c2a3 – b3 + c3 + 3abcbài 2 : cho phân thức : tìm điều kiện của x để A có nghĩa.Rút gọn A.Tính x để A < 1.Bài 3 : Chứng minh các bất đẳng thức :Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :Chứng minh rằng : x5 + y5 ≥  x4y +...
Đọc tiếp

Bài 1 : phân tích đa thức thành nhân tử.

  1. 3x2 + 2x – 1
  2. x3 + 6x2 + 11x + 6
  3. x4 + 2x2 – 3
  4. ab + ac +b2 + 2bc + c2
  5. a3 – b3 + c3 + 3abc

bài 2 : cho phân thức : A = \frac{x^4-2x^2+1}{x^3-3x -2}

  1. tìm điều kiện của x để A có nghĩa.
  2. Rút gọn A.
  3. Tính x để A < 1.

Bài 3 : Chứng minh các bất đẳng thức :

  1. Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.
  2. Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :

\frac{a}{b+c} +\frac{b}{a+c} +\frac{c}{a+b} <2

  1. Chứng minh rằng : x5 + y5 ≥  x4y + xy4 với x, y ≠ 0 và x + y ≥ 0

Bài 4 : giải phương trình :

  1. x2 – 3x + 2 + |x – 1| = 0
  2. \frac{x+2}{x-2} -\frac{1}{x} -\frac{2}{x(x-2)} =0

 Bài 5 : Trong cuộc đua mô tô có ba xe khởi hành cùng một lúc. Xe thứ hai trong một giờ chạy chậm hơn xe thứ nhất 15km và nhanh xe thứ ba 3km. nên đến đích chậm hơn xe thứ nhất 12 phút và sớm hơn xe thứ ba 3 phút. Không có sự dừng lại dọc đường đi. Tính vận tốc mỗi xe, quãng đường đua và thời gian mỗi xe.

                                             Các bàn giải giúp mình câu nào cũng được.

1
11 tháng 11 2017

B1

1. = (x+1).(3x-1)

2.=(x+1).(x+2).(x+3)

3. = (x-1).(x+1).(x^2+3)

4. = (b+c).(a+b+c)

5. = (a+b+c).(a^2+b^2+c^2-ab-bc-ca)

k mk nha bạn