Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:x>0;x\ne9\\ b,A=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ A=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ c,A>\dfrac{2}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{2}{5}>0\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{5}>0\\ \Leftrightarrow\dfrac{2-\sqrt{x}}{5\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow2-\sqrt{x}>0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)
Sửa đề: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
a) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(=\dfrac{x-1}{x}\)
b) Sửa đề: \(2\sqrt{x+1}=5\)
Ta có: \(2\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{x+1}=\dfrac{5}{2}\)
\(\Leftrightarrow x+1=\dfrac{25}{4}\)
hay \(x=\dfrac{21}{4}\)(thỏa ĐK)
Thay \(x=\dfrac{21}{4}\) vào biểu thức \(P=\dfrac{x-1}{x}\), ta được:
\(P=\left(\dfrac{21}{4}-1\right):\dfrac{21}{4}=\dfrac{17}{4}\cdot\dfrac{4}{21}=\dfrac{17}{21}\)
Vậy: Khi \(2\sqrt{x+1}=5\) thì \(P=\dfrac{17}{21}\)
c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2x}-\dfrac{x-1}{2x}>0\)
mà \(2x>0\forall x\) thỏa mãn ĐKXĐ
nen \(2\left(x-1\right)-x+1>0\)
\(\Leftrightarrow2x-2-x+1>0\)
\(\Leftrightarrow x-1>0\)
hay x>1
Kết hợp ĐKXĐ, ta được: x>1
Vậy: Để \(P>\dfrac{1}{2}\) thì x>1
a: ĐKXĐ: x=0; x<>1
\(M=\left(2+\sqrt{x}\right)\left(1-2\sqrt{x}-x+1+\sqrt{x}+x\right)\)
\(=\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)=4-x\)
b: Sửa đề: P=1/M
P=1/4-x=-1/x-4
Để P nguyên thì x-4 thuộc {1;-1}
=>x thuộc {5;3}
a) \(x>0,x\ne1\)
b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\left(\sqrt{x}-1\right)=\dfrac{x-1}{\sqrt{x}}\)
c) \(P< 0\Rightarrow\dfrac{x-1}{\sqrt{x}}< 0\) mà \(\sqrt{x}>0\Rightarrow x-1< 0\Rightarrow x< 1\Rightarrow0< x< 1\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
\(a,A=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\left(x>0;x\ne1\right)\\ A=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\\ A=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(b,\dfrac{P}{A}\left(x-1\right)=0\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\cdot\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0\left(\sqrt{x}+1>0\right)\)
a) \(A=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b) \(\dfrac{P}{A}\left(x-1\right)=0\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}:\dfrac{\sqrt{x}+1}{\sqrt{x}}.\left(x-1\right)=0\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-1}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow x=0\)( do \(\sqrt{x}+1\ge1>0\))(không thỏa đk)
Vậy \(S=\varnothing\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
b) Để P>0 thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}>0\)
mà \(\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}\left(\sqrt{x}-1\right)>0\)
mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}-1>0\)
\(\Leftrightarrow\sqrt{x}>1\)
hay x>1
Kết hợp ĐKXĐ, ta được: x>1
Vậy: Để P>0 thì x>1
a) ĐKXĐ: \(x>0;x\ne4\)
\(Q=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right)\)
\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]:\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
b) Để biểu thức \(Q\) có giá trị âm thì \(\dfrac{3\sqrt{x}}{\sqrt{x}-2}< 0\)
\(\Rightarrow\sqrt{x}-2< 0\) (vì \(3\sqrt{x}>0\forall x>0;x\ne4\))
\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)
Kết hợp với điều kiện xác định của \(x\), ta được: \(0< x< 4\)
\(\text{#}\mathit{Toru}\)
đk là 0<x<4 thì ở kết quả <=> em thêm không âm ở trước nữa hoặc => x<4 nha.