\(\frac{-5n-12}{3n-2}\)Tìm các số tự nhiên n để biể thức A l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

ấn vào đúng 0 sẽ có câu trả lời

 

1 tháng 2 2016

thì bạn trả lời đi đã

26 tháng 3 2018

Đề bài sai nha!

\(B=\frac{4n+2}{n+2}=\frac{4n+8-6}{n+2}\)

\(=4-\frac{6}{n+2}\)

Để B là stn thì 6/n+2 là stn.

=> 6 chia hết cho n+2

=> n+2 thuộc Ư(6)

 ......................(tự làm nhé)...........................

19 tháng 5 2017

b) Để A là phân số 

=> n - 2 \(\ne0\)

=> n \(\ne2\)

b) Để A là số nguyên

=> -5 chia hết cho n - 2

=> n - 2 thuộc Ư(-5) = {1 ; -1 ; 5; - 5}

Ta có bảng sau :

n - 21-15-5
n317-3
19 tháng 5 2017

Để A là p/số thì n-2 \(\ne\)

=> Nếu n-2=0 thì 

n-2=0

n=2+0

n=2

=>n\(\ne\) 2

b/ Để A số nguyên thì 

5\(⋮\) n-2

=> n-2\(\in\) Ư(5)

n-2=1                        

n=1+2

n=3

 n-2=-1

n=-1+2

n=1 

tự làm tiếp

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

25 tháng 5 2015

Ta có \(B=\frac{2n+2+5n+17-3n}{n+2}=\frac{\left(2n+5n-3n\right)+\left(2+17\right)}{n+2}\)

              \(=\frac{4n+19}{n+2}=\frac{4n+8+11}{n+2}=\frac{4n+8}{n+2}+\frac{11}{n+2}=4+\frac{11}{n+2}\)

Để B là số tự nhiên \(\Leftrightarrow\frac{11}{n+2}\) là số tự nhiên

\(\Rightarrow\) n + 2 \(\in\) Ư(11) . Vì n là số tự nhiên \(\Leftrightarrow\) n + 2 \(\in\) {1 ; 11}

\(\Leftrightarrow\) n  = 9

25 tháng 5 2015

Ta có: \(\frac{2n+2}{2+n}+\frac{5n+17}{2+n}-\frac{3n}{2+n}=\frac{2n+2+5n+17-3n}{2+n}=\frac{\left(2n+5n-3n\right)+\left(2+17\right)}{2+n}=\frac{4n+19}{2+n}\)

Để B là số tự nhiên thì 4n+19 : 2+n

=> 4*(n+2)-11:2+n

=> 11:2+n hay 2+n thuộc Ư(11)={1;11}

=> n =9. 

Vậy để B có giá trị là số nguyên thì n=9

(lưu ý: dấu : tức là chia hết cho)

Chúc bạn học tốt!^_^

19 tháng 12 2023

Em con quá non

1 tháng 4 2020

a) Để C là phân số thì \(n+6\ne0\)

\(\Rightarrow n\ne-6\)

Vậy \(n\ne-6\)

b) Để C là số nguyên thì \(5n-1⋮n+6\)

\(\Rightarrow5n-30+31⋮n+6\)

\(\Rightarrow5\left(n-6\right)+31⋮n+6\)

Mà \(n+6⋮n+6\)

\(\Rightarrow31⋮n+6\)

\(\Rightarrow n+6\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

...  (tự làm)

1 tháng 4 2020

Bài chị Vũ Huyền làm gần đúng câu b, cho Mạnh "mạn phép" được sửa lại:

b) Để biểu thức C là 1 số nguyên thì 5n - 1 \(⋮\)n + 6  (n \(\inℤ\))

=> 5n - 1 \(⋮\)n + 6  (n \(\inℤ\))

=> 5n + 30 - 31 \(⋮\)n + 6

=> 5(n + 6) - 31 \(⋮\)n + 6

Vì 5(n + 6) - 31 \(⋮\)n + 6 và 5(n + 6) \(⋮\)n + 6

Nên 31 \(⋮\)n + 6

Tự lm tiếp :))

29 tháng 3 2020

\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)

\(=\frac{2n+1+3n-5-4n+5}{n-3}\)

\(=\frac{n+1}{n-3}\)

a) Để A là phân số thì \(n-3\ne0\)

\(\Leftrightarrow n\ne3\)

b) Để A là số nguyên thì \(n+1⋮n-3\)

Ta có n+1=n-3+4

=> 4 \(⋮\)n-3

=> n-3\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Ta có bảng

n-3-4-2-1124
n-112457
29 tháng 3 2020

Đặt  \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+3n-5-4n-5}{n-3}=\frac{n-9}{n-3}\)

a) Để A là một phân số thì \(n-3\ne0\)=> \(n\ne3\)

b) Ta có : \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{n-9}{n-3}=\frac{n-3-6}{n-3}=1-\frac{6}{n-3}\)

A có giá trị nguyên <=> \(n-3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n - 31-12-23-36-6
n4251609-3
19 tháng 2 2020

B = \(\frac{2n+9}{n+2}\)\(\frac{5n+17}{n+2}\)-\(\frac{3n}{n+2}\)

B= \(\frac{2n+9+5n+17-3n}{n+2}\)

B= \(\frac{\left(2n+5n-3n\right)+9+17}{n+2}\)

B= \(\frac{4n+9+17}{n+2}\)\(\frac{4n+26}{n+2}\)

Để biểu thức B là số tự nhiên thì ( 4n+26) \(⋮\)n+2

=> n+2 \(⋮\)n+2

=> (4n+26) - 4(n+2)\(⋮\)n+2

=> 4n+26 - 4n - 8 \(⋮\)n+2

=> 18 \(⋮\)n+2

=> n+2 \(\in\)Ư(18)={1; 2; 9; 3; 6; 18; -1; -2; -9; -3; -6; -18}

=> N\(\in\){ -1; 0; 7; 1; 4; 16; -3; -4; -5; -11; -20; -8}

Vậy...