K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2022

sưả đề \(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)

\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)

\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{99}{100}\)

21 tháng 1 2022

làm chi tiết đc ko ạ

28 tháng 3 2017

Xét mẫu số:   1/(2x3) + 1/(3x4) + …… + 1/(99x100)

       = 1/1 – 1/2 + 1/3 – 1/4 + ......... + 1/99 – 1/100

       = (1 + 1/3 + ............ + 1/99) – (1/2 + 1/4 + .......... + 1/100)

       = (1 + 1/3 + ............ + 1/99)+(1/2+1/4+1/6+….+1/100) – (1/2+1/4+1/6+ .......... + 1/100)x2

       = (1 + 1/2 + 1/3 + 1/4 + ..... + 1/99 + 1/100) – (1 + 1/2  + 1/3 + ....... +1/50 )

       = 1/51 + 1/52 + 1/53 + ............. + 1/100            (Đơn giản số trừ)

         =>(1/51 + 1/52 + 1/53 + ............. + 1/100) / (1/51 + 1/52 + 1/53 + ............. + 1/100) = 1

14 tháng 6 2020

\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2019.2020}\)

\(\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(\frac{1}{4}A=1-\frac{1}{2020}=\frac{2019}{2020}\)

\(\Rightarrow A=\frac{2019}{2020}:\frac{1}{4}=\frac{2019}{505}\)

Vậy \(A=\frac{2019}{505}.\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)

\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(2B=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\)

\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)

Vậy \(B=\frac{4949}{19800}.\)

14 tháng 6 2020

\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2019\cdot2020}\)

\(A=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\right)\)

\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(A=4\left(1-\frac{1}{2019}\right)=4\cdot\frac{2018}{2019}\)

Đến đây tự tính

\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

Số hơi bị dữ nên tính nốt nhé

13 tháng 3 2020

+) \(M=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2019\cdot2020}\)

\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2019}-\frac{1}{2010}\)

\(M=1-\frac{1}{2010}=\frac{2009}{2010}\)

Vậy M=\(\frac{2009}{2010}\)

+) Đặt A=\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{50}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\cdot\cdot\cdot\frac{49}{50}\)

\(A=\frac{1\cdot2\cdot\cdot\cdot\cdot49}{2\cdot3\cdot\cdot\cdot\cdot50}=\frac{1}{50}\)

6 tháng 5 2017

\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\cdot\frac{5^2}{5\cdot6}=\frac{1^2}{1\cdot6}=\frac{1}{6}\)

lan sau nho ghi de cho dung nha bn

6 tháng 5 2017

\(\frac{1.1.2.2.3.3.4.4.5.5}{1.2.2.3.3.4.4.5.5.6}\)=\(\frac{\left(1.2.3.4.5\right).\left(1.2.3.4.5\right)}{\left(1.2.3.4.5\right)\left(2.3.4.5.6\right)}=\frac{1}{6}\)

3 tháng 11 2016

C=1.2+2.3+...+99.100

3C=1.2.3+2.3.3+...+99.100.3

3C=1.2(3-0)+2.3(4-1)+...+99.100(101-98)

C=99.100.101 phần 3

C=333 300

3 tháng 11 2016

Mình hông hiểu bài đó

 

23 tháng 5 2017

sorry mình nhầm

ta có:

M=\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\).\(\frac{3^2}{3.4}\).\(\frac{4^2}{4.5}\)

=\(\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}\)

=\(\frac{1}{5}\)

vậy M=\(\frac{1}{5}\)

23 tháng 5 2017

\(M=\frac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\frac{1}{5}\)

22 tháng 3 2018

hình như là 32 chứ k f 33

\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)

\(B=\frac{\left(1\cdot1\right)\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)}{\left(1\cdot2\right)\left(2\cdot3\right)\left(3\cdot4\right)\left(4\cdot5\right)}\)

\(B=\frac{\left(1\cdot2\cdot3\cdot4\right)\left(1\cdot2\cdot3\cdot4\right)}{\left(1\cdot2\cdot3\cdot4\right)\left(2\cdot3\cdot4\cdot5\right)}\)

\(=\frac{1}{5}\)

22 tháng 3 2018

\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)

\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5}\)

\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1^2\cdot2^2\cdot3^2\cdot4^2\cdot5}=\frac{1}{5}\)

3 tháng 1 2018

A = (13x+5a)+(21b-3b) = 18a+18b = 18.(a+b) = 18.100 = 1800

B = (1+100).100 : 2 = 5050

Tk mk nha

A=13a+21b+5a-3b

A=(13a+5a)+(21b-3b)

A=18a+18b

A=18.(a+b)

tha a+b+100ta được:

A=18.100

A=1800

B=1+2+3+...+99+100

số số hạng của tổng Blà(100-1):1+1=100

vậy B=(100+1).100:2=5050

C=1.2+2.3+3.4+...+99.100

3C=1.2.3+2.3.3+3.4.3+...+99.100.3

3C=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3C=(1.2.3+2.3.4+3.4.5+...+99.100.101)-(0.1.2+1.2.3+2.3.4+...+98.99.100)

3C=99.100.101-0.1.2

3C=999900-0

3C=999900

C=999900:3

C=333300