K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(^-^'')CẦN GIẢI GẤP ĐỐNG BÀI NÀY(Có cả hình ở mỗi bài nha!)Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh : a) BD = CEb) Tam giác OEB bằng tam giác ODCc) AO là tia phân giác của góc BACd) Gọi M là trung điểm của BC. Chứng minh :  A,O,M thẳng hàng.Câu 2 :Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của...
Đọc tiếp

(^-^'')
CẦN GIẢI GẤP ĐỐNG BÀI NÀY
(Có cả hình ở mỗi bài nha!)

Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh : 
a) BD = CE
b) Tam giác OEB bằng tam giác ODC
c) AO là tia phân giác của góc BAC
d) Gọi M là trung điểm của BC. Chứng minh :  A,O,M thẳng hàng.

Câu 2 :

Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của BC. Trên tia AM lấy điểm E sao cho M là trung điểm của AE, Nối C với E. 
a) So sánh AB và CE
b) Chứng minh : \(\frac{AC-AB}{2}< AM< \frac{AC+AB}{2}.\)

Câu 4: Cho ∆ABC vuông tại C có góc A = 60o. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK ⊥ AB( K ∈ AB ).Kẻ BD ⊥ AE( D ∈ AE ). Chứng minh: 

a) AC=AK và AE ⊥ CK
b) KA=KB
c) EB>AC
d) Ba đường thẳng AC,BD,KE đồng quy.

Câu 5: Cho ∆ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho CD=AB. Hai đường trung trực của BD và AC cắt nhau tại E. Chứng minh rằng:
a)∆AEB = ∆CED
b) AE là tia phân giác trong tại đỉnh A của ∆ABC

4
8 tháng 4 2019

Càng nhanh càng tốt nha :D

29 tháng 1 2016

a) Ta có : tam giác ABC vuông tại A 

=> góc B + góc C = 90\(^o\)

Mà góc B = 53\(^o\)

=> góc C = góc A - góc B 

=> góc C = 90\(^o\)- 53\(^o\)

=> góc C = 37\(^o\)

b) Xét tam giác BEA và  tam giác BED có :

BD = BA (gt)

BE là cạnh chung

góc ABE = góc DBE ( BE là tia p/giác của góc B)

=>  tam giác BEA =  tam giác BED

c) Ta có CH vuông góc với BE 

=> Tam giác BHC và  tam giác BHF là  tam giác vuông

Xét  tam giác vuông BHF và  tam giác vuông BHC có:

BH là cạnh chung 

góc FBH = góc HBC ( BE là tia p/giác của góc B)

=>  tam giác vuông BHF =  tam giác vuông BHC ( cạnh góc vuông + góc nhọn )

=> BF = BC ( 2 cạnh tương ứng ) (*)

d) Xét tam giác BEF và tam giác BEC có :

BF = BC ( theo (*))

góc FBE = góc CBE ( BE là tia p/giác của góc B)

BE là cạnh chung

=>  tam giác BEF = tam giác BEC (c . g . c )

=> góc BFD = góc BCA ( 2 góc tương ứng ) (**)

Xét  tam giác BAC và  tam giác BDF có :

góc BFD = góc BCA ( theo (**))

góc B là góc chung

BA = BD (gt)

=> tam giác BAC =  tam giác BDF ( g . c . g )

=> góc FDB = góc CAB ( 2 góc tương ứng )

Xét tam giác BED có : góc EBD +  góc BED +  góc BDE = 180\(^o\)

Mà :góc FDB = góc CAB = 90\(^o\)

góc EBD = \(\frac{1}{2}\)góc B = \(\frac{53}{2}\)= 26,5\(^o\)

=> góc BED = 180\(^o\)- (90\(^o\)+ 26,5\(^o\))

=> góc BED = 180\(^o\)- 116,5\(^o\)

=> góc BED = 63,5\(^o\)

Mặt khác : Tam giác BED = tam giác BEA 

=> góc AEB = BED = 63,5\(^o\)

Xét tam giác FAE có :góc FAE + góc FEA + góc AFE = 180\(^o\)

Mà : góc FAE = 90\(^o\), góc AFE = góc ACB = 37\(^o\)

=> FEA = 180\(^o\)- (90\(^o\)+ 37\(^o\))

=> FEA = 180\(^o\)- 127\(^o\)

=> FEA = 53\(^o\)

Lại có : góc FAD = góc FEA + góc AEB + góc BED 

=> FAD = 53\(^o\)+ 63,5\(^o\)+ 63,5 \(^o\)

=> FAD = 180\(^o\)

=> D, F, E thẳng hàng

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:a) tg ADB = tg ADCb) AB = ACBài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.a) Chứng minh rằng OA = OB;b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBCBài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy...
Đọc tiếp

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:
a) tg ADB = tg ADC
b) AB = AC
Bài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,
kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.
a) Chứng minh rằng OA = OB;
b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBC
Bài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D
sao cho OA = OB, AC = BD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh: tg EAC = tg EBD
c) Chứng minh: OE là phân giác của góc xOy, OE vuông góc CD
Bài 28 : Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy
điểm N, trên tia CB lấy điểm M sao cho CN=BM.
a) Chứng minh tg ABI= tg ACI và AI là tia pg của góc BAC
b)Chứng minh AM=AN.
c) Chứng minh AI vuông góc BC.

1
26 tháng 2 2020

1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

\(\Rightarrow AB=AC\)

XÉT \(\Delta ADB\)\(\Delta ADC\)

\(AB=AC\left(CMT\right)\)

\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)

\(AD\)LÀ CẠNH CHUNG

\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)

B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

=> AB=AC

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết