K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

ta có: 49x+11y=224
=>49x=224-11y
=>0<49x<224(vì x là SNT)
=>x∈(2;3;4)
Với x=2, thì ta được:
      49.2=224-11y
<=>98=224-11y
<=>224-98=11y
<=>126=11y
<=>y≈ 11,45(không thảo mãn với y là SNT)
Với x=3, thì ta được:
      49.3=224-11y
<=>147=224-11y
<=>224-147=11y
<=>77=11y
<=>y=7(thỏa mãn với y là SNT)
Với x=4, thì ta được:
      49.4=224-11y
<=>196=224-11y
<=>224-196=11y
<=>28=11y
<=>y≈ 2,55(không thảo mãn với y là SNT)
      vậy x=3;y=7

mik ko chắc là đúng nha

17 tháng 2 2020

Ta có: \(49x+11y=224\Rightarrow0< 49x< 224\)

\(\Rightarrow1\le x\le4\)Do x là số nguyên tố nên x=3

thay x=3 ta được y=7 (TM)

Vậy....................................

Chúc bạn học tốt :>

19 tháng 3 2017

Câu 1:

Để B là số nguyên

=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}

Ta có bảng:

n-315-1-5
n482-2
B51-5

-1

=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)

2 tháng 5 2016

Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a∈ Z) ⇔ a2 – n2 = 2006 ⇔ ( a - n ) ( a + n ) = 2006 ( * ) 

+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của ( * ) là số lẻ nên không thỏa mãn ( * ) 

+ Nếu a,n cùng tính chẵn hoặc lẻ thì ( a - n )⋮2 và ( a + n ) ⋮2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn ( * )

Vậy không tồn tại n để n2 + 2006 là số chính phương

2 tháng 5 2016

 b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1 + 2006 = 3m + 2007 = 3( m + 669 ) chia hết cho 3. 

Vậy n2 + 2006 là hợp số.

9 tháng 5 2016

                                  a)               Vi n2 + 2006  la so chinh phuong nen n2 + 2006 = a2 suy ra n2 - a2 = 2006  hay (n+a)x(n-a) = 2006

                                                Ta có a - n + n + a = 2a chia hết cho 2 và a+n - a+n = 2n chia hết cho 2

                                                   Suy ra (ã-n)x(ã+n) có cùng tính chẵn lẻ

                                                  TH1 : a-n và a+n cũng là số lẻ suy ra (a+n) x (a-n) là số lẻ mà 2006 là số chẵn (loại)

                                                   TH2 : a-n và a+n cũng là số chẵn suy ra (a-n)x(a+n) là số chẵn 

                                                   suy ra a-n chia hết cho 2 và a+n chia hết cho 2 nên (a-n)x(a+n) chia hết cho 4 

                                                  mà 2006 ko chia hết cho 4 nè ko có giá trị nào của n thỏa mãn đề bài