Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tan\alpha=-3\Rightarrow\alpha\simeq108^0\)
\(tan\beta=-5\Rightarrow\beta\simeq101^0\)
\(\Rightarrow90^0< \beta< \alpha\)
Minh An, Nguyễn Ngọc Linh, tth, Phạm Lan Hương, Vũ Minh Tuấn, Lê Nguyễn Ngọc Hà, Linh Phương, Duyên, Toàn Nguyễn Đức, Akai Haruma, Băng Băng 2k6, tth, No choice teen, Nguyễn Lê Phước Thịnh, HISINOMA KINIMADO, Lê Thị Thục Hiền, Nguyễn Huy Tú, Nguyễn Huy Thắng, Nguyễn Thanh Hằng, Hồng Phúc Nguyễn, Mysterious Person, soyeon_Tiểubàng giải, Võ Đông Anh Tuấn, Phương An, Trần Việt Linh,...
a: \(\text{Δ}=\left(-5\right)^2-4\cdot3\cdot8=25-96< 0\)
Do đó: Phươbg trình vô nghiệm
b: \(\text{Δ}=\left(-3\right)^2-4\cdot15\cdot5=9-300< 0\)
Do đó: Phương trình vô nghiệm
c: \(\Leftrightarrow x^2-4x+4-3=0\)
\(\Leftrightarrow\left(x-2\right)^2=3\)
hay \(x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)
d: \(\Leftrightarrow3x^2+6x+x+2=0\)
=>(x+2)(3x+1)=0
=>x=-2 hoặc x=-1/3
a) -5x2 + 3x + 2 = 0 (a = -5; b = 3; c = 2)
\(\Delta=3^2-4\cdot\left(-5\right)+2=31\)
=> Phương trình có nghiệm
Ta có a + b + c = -5 +3 +2 = 0
Nên phương trình có 2 nghiệm:
x1= 1; x2 = \(\dfrac{c}{a}\) = \(\dfrac{2}{-5}\) = \(\dfrac{-2}{5}\)
b) 7x2 + 6x - 13 = 0 (a = 7; b = 6; c = -13)
\(\Delta=6^2-4\cdot7\cdot\left(-13\right)=400\)
Nên phương trình có nghiệm
Ta có a + b + c = 7 + 6 +(-13) = 0
Nên phương trình có 2 nghiệm:
x1= 1; x2 = \(\dfrac{c}{a}=\dfrac{-13}{7}\)
c) x2 - 7x + 12 = 0 (a = 1; b = -7; c = 12)
\(\Delta\) = (-7)2 - 4 * 1 * 12= 1
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)+\sqrt{1}}{2\cdot1}=4\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)-\sqrt{1}}{2\cdot1}=3\)
Vậy phương trình có 2 nghiệm x1=4 và x2=3
d)-0,4x2 +0,3x +0,7 =0 (a = -0,4; b= 0,3; c= 0,7)
\(\Delta=\left(0,3\right)^2-4\cdot\left(-0,4\right)\cdot0,3=0,57\)
Nên phương trình có nghiệm
Ta có a - b + c = (-0,4) - 0,3 + 0,7 = 0
Nên phương trình có 2 nghiệm x1 = -1; \(x_2=\dfrac{-c}{a}=\dfrac{-0,7}{-0,4}=\dfrac{7}{4}\)
e)3x2+(3-2m)x-2m =0(a= 3;b=3-2m;c= -2m)
\(\Delta=\left(3-2m\right)^2-4\cdot3\cdot\left(-2m\right)\)
= 9 - 12m + 4m +24m = 9 + 16m
Do \(\left\{{}\begin{matrix}9>0\\16m\ge0\end{matrix}\right.\)nên phương trình có nghiệm
Ta có a - b + c = 3- (3-2m) +( -2m)
= 3 -3 + 2m - 2m = 0
Nên phương trình có 2 nghiệm
x1= - 1; x2=\(\dfrac{-c}{a}=\dfrac{-\left(-2m\right)}{3}=\dfrac{2m}{3}\)
f) 3x2 - \(\sqrt{3}\)x - ( 3+\(\sqrt{3}\))=0
(a= 3; b= \(-\sqrt{3}\); c=\(-\left(3+\sqrt{3}\right)\))
\(\Delta=\left(-\sqrt{3}\right)^2-4\cdot3\cdot\left(-\left(3+\sqrt{3}\right)\right)\)
= 39+12\(\sqrt{3}\)
Nên phương trình có nghiệm
Ta có a - b +c = 3 - (\(-\sqrt{3}\)) + (-(3+\(\sqrt{3}\))) = 0
Phương trình có 2 nghiệm x1= -1;
x2=\(\dfrac{-c}{a}=\dfrac{-\left(-\left(3+\sqrt{3}\right)\right)}{3}=\dfrac{3+\sqrt{3}}{3}\)
a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
b: \(x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
c: \(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)
C
Chọn C