K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

Ok , no broblem

9 tháng 10 2017

Bài 1 . ( 20x4y - 25x2y2 - 3x2 y) : 5x2y

= 5x2y.( 4x2 - 5y - \(\dfrac{3}{5}\)) : 5x2y

= 4x2 - 5y - \(\dfrac{3}{5}\)

Bài 2 . a) ( -2x5 + 3x2 - 4x3) : 2x2

= 2x2.( -x3 + \(\dfrac{3}{2}\) - 2x ) : 2x2

= - x3 - 2x + \(\dfrac{3}{2}\)

b) ( x3 - 2x2y + 3xy2) : ( \(\dfrac{1}{2}x\))

= \(\dfrac{1}{2}x\).( 2x2 - 4xy + 6y2) : ( \(\dfrac{1}{2}x\))

= 2x2 - 4xy + 6y2

c) ( 3x2y2 + 6x2y3 - 12xy ) : 3xy

= 3xy.( xy + 2xy2 - 4 ) : 3xy

= xy + 2xy2 - 4

16 tháng 7 2017

Bài 1:

a, \(2x\left(y-z\right)+5y\left(z-y\right)=2x\left(y-z\right)-5y\left(y-z\right)\)

\(=\left(y-z\right)\left(2x-5y\right)\)

b, \(x^3-3x^2+3x-1=x^3-x^2-2x^2+2x+x-1\)

\(=x^2.\left(x-1\right)-2x.\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+1\right)=\left(x-1\right)\left(x^2-x-x+1\right)\)

\(=\left(x-1\right)\left(x-1\right)^2=\left(x-1\right)^3\)

c, \(7x^2-7xy-4x+4y=7x.\left(x-y\right)-4.\left(x-y\right)\)

\(=\left(x-y\right)\left(7x-4\right)\)

d, \(x^2-6x+8=x^2-2x-4x+8\)

\(=x.\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\)

Chúc bạn học tốt!!!

16 tháng 7 2017

1)

a) \(2x\left(y-z\right)+5y\left(z-y\right)\)

\(=2x\left(y-z\right)-5y\left(y-z\right)\)

\(=\left(y-z\right)\left(2x-5y\right)\)

b) \(x^3-3x^2+3x-1\)

\(=x^3-3.x^2.1+3.x.1^2-1^3\)

\(=\left(x-1\right)^3\)

c) \(7x^2-7xy-4x+4y\)

\(=7x\left(x-y\right)-4\left(x-y\right)\)

\(=\left(x-y\right)\left(7x-4\right)\)

d) \(x^2-6x+8\)

\(=x^2-4x-2x+8\)

\(=x\left(x-4\right)-2\left(x-4\right)\)

\(=\left(x-4\right)\left(x-2\right)\)

2)

a) \(\left(5x^2+3x-1\right)\left(x+3\right)\)

\(=5x^3+3x^2-x+15x^2+9x-3\)

\(=5x^3+3x^2+15x^2-x+9x-3\)

\(=5x^3+18x^2+8x-3\)

b) \(\left(x^3+2x^2+3x-1\right):\left(x^2-2\right)\)

\(=x+2+\dfrac{5x+3}{x^2-2}\)

a: \(x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

=>x=1 hoặc x=3

b: \(x^2+x-12=0\)

=>(x+4)(x-3)=0

=>x=3 hoặc x=-4

c: \(3x^2+2x-5=0\)

\(\Leftrightarrow3x^2+5x-3x-5=0\)

=>(3x+5)(x-1)=0

=>x=1 hoặc x=-5/3

d: \(x^4-2x^2-3=0\)

\(\Leftrightarrow x^4-3x^2+x^2-3=0\)

\(\Leftrightarrow x^2-3=0\)

hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

26 tháng 9 2017

a) \(x^3-\dfrac{1}{9}x=0\)

\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(x\left(x-3\right)+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)

\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)

d) \(x^2\left(x-3\right)+27-9x=0\)

\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)

\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)

\(\Rightarrow x-3=0\Rightarrow x=3.\)

4 tháng 10 2017

\(\dfrac{2}{5}\)

22 tháng 9 2017

Sao bạn không tự làm bớt đi , bài dễ mà

16 tháng 9 2017

a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y

=5x3-7x2y+2xy2+5x-2y

b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-2x+20\)

16 tháng 9 2017

c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)

=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)

d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)

=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)

=\(-5x+4x-15\)

=\(-x-15\)

Chúc bạn học tốt(mỏi tay quá)

18 tháng 12 2016

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

 

 

18 tháng 12 2016

thui mik hieu roi cam on mn

7 tháng 11 2016

a/ Áp dụng BĐT Bunhiacopxki :

\(5^2=\left(1.x+2.y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)\Leftrightarrow5A\ge25\Leftrightarrow A\ge5\)

Đẳng thức xảy ra khi \(\begin{cases}x=\frac{y}{2}\\x+2y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=2\end{cases}\)

Vậy MaxA = 5 <=> (x;y) = (1;2)

b/ Áp dụng BĐT Cauchy : \(5=x+2y\ge2\sqrt{2xy}\Rightarrow xy\le\frac{25}{8}\)

Đẳng thức xảy ra khi \(\begin{cases}x=2y\\x+2y=5\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{5}{2}\\y=\frac{5}{4}\end{cases}\)

Vậy MaxA = 25/8 <=> (x;y) = (5/2;5/4)

a: \(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x\left(x-4\right)\)

\(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)

\(=x^3-2x^2+5x\)

b: Sửa đề: \(\left(x^3+6x^2+12x+8\right)+3\left(x^2+4x+4\right)+3\left(x+2\right)\) 

\(=x^3+6x^2+12x+8+3x^2+12x+12+3x+6\)

\(=x^3+9x^2+27x+26\)

Bài 2:

a: \(A=-3\left(x^2-\dfrac{4}{3}x+\dfrac{1}{3}\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{1}{9}\right)\)

\(=-3\left(x-\dfrac{2}{3}\right)^2+\dfrac{1}{3}\le\dfrac{1}{3}\)

Dấu '=' xảy ra khi x=2/3

b: \(B=-x^2+5x+3\)

\(=-\left(x^2-5x-3\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{37}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{4}\le\dfrac{37}{4}\)

Dấu '=' xảy ra khi x=5/2