Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số thí sinh làm bài chỉ gồm 1 tờ giấy thi là x ( đk : x \(\in\) N* ; X < 24 )
Số thí sinh làm bài gồm 2 tờ giấy thi là y ( đk y\(\in\) N* ; y < 24 )
Do một phòng thi có 24 thí sinh dự thi nên ta có phương trình
x + y = 24 ( 1 )
Sau khi thu bài cán bộ coi thi đếm được 33 tờ giấy thi nên ta có phương trình : x + 2y = 33 ( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ phương trình
\(\hept{\begin{cases}x+y=24\\x+2y=33\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=9\end{cases}\left(TM\right)}}\)
Vậy có 15 thí sinh làm bài gồm 1 tờ giấy thi , có 9 thí sinh làm bài gồm 2 tờ giấy thi
Tổng số HS làm 1 - 2 tờ:
24 - 3 = 21 (học sinh)
Tổng số giấy làm bài của 21 học sinh làm từ 1-2 tờ:
43 - 3 x 3 = 34 (tờ)
Gọi a,b lần lượt là số học sinh làm 1 tờ giấy, 2 tờ giấy trong kì thi tuyển sinh vào 10 đó. (0<a,b<21. a và b là số tự nhiên)
Vì tổng số hs làm 1-2 tờ là 21 hs nên ta có pt (1): a+b=21
Vì tổng số giấy 21 hs này làm là 34 tờ nên ta có pt (2): a+ 2b=34
Từ pt (1) và (2), ta lập hệ pt:
\(\left\{{}\begin{matrix}a+b=21\\a+2b=34\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\left(TM\right)\\b=13\left(TM\right)\end{matrix}\right.\)
Vậy có 8 thí sinh là 1 tờ giấy, 13 thí sinh làm 2 tờ giấy
bn ơi sao nhiều câu 2 thế?
Giải câu 1 : mảnh vườn..
gọi chiều dài mảnh vườn là x m(x>0)
gọi chiều rộng mảnh vườn là y m(y>0)
chu vi mảnh vườn hình chữ nhật đó là : ( x+y).2 =44 \(\Rightarrow\)x+y = 22 \(\Rightarrow\)x=22-y
Theo đề bài ta có : Diện tích mảnh vườn HCN là : (x+3)(x+2)=xy +55 (1)
Giải phương trình (1) : \(xy+2x+3y+6=xy+55\)
\(\Leftrightarrow2x+3y=49\)
Thay x=22-y vào phương trình trên ta có:
\(2\left(22-y\right)+3y=49\)
\(\Leftrightarrow44-2y+3y=49\)
\(\Leftrightarrow y=5\)\(\Rightarrow\)X=17
Vậy chiều dài mảnh vườn là 17 m, chiều rộng mảnh vườn là 5 m
Giải câu 2 :phòng học...
Gọi số ghế trong lớp học là x ghế ( x>0)
Gọi số học sinh trong lớp học là y học sinh ( y>0)
Do xếp mỗi ghế 3 hs thì thừa 4 hs k có chỗ nên ta có phương trình (1) : 3x+4=y
Do xếp mỗi ghế 4 học sinh thì thừa ra 2 ghế. nên ta có phương trình (2) : 4(x-2) =y
Từ 2 phương trình trên ta có : 3x+4 = 4(x-2) =y
\(\Leftrightarrow3x+4=4x-8\)
\(\Leftrightarrow3x-4x=-8-4\)
\(\Leftrightarrow-x=-12\)
\(\Leftrightarrow x=12\) \(\Leftrightarrow y=3.12+4=40\)
Vậy trong phòng học có 12 ghế và 40 học sinh
Gọi số thí sinh là x ( \(\inℕ^∗\) ; học sinh ) và số phòng thi là y ( \(\inℕ^∗\); phòng )
+) Nếu mỗi phòng chỉ có 25 học sinh thì có 14 học sinh chưa có phòng thi:
=> x = 25.y + 14 (1)
+) Nếu mỗi phòng có 26 học sinh thì phòng cuối cùng chỉ có 5 bạn:
=> x = 26 ( y - 1) + 5 (2 )
Từ (1) ; (2) ta có hệ: \(\hept{\begin{cases}x-25y=14\\x-26y=-21\end{cases}}\Leftrightarrow\hept{\begin{cases}x=889\\y=35\end{cases}}\)( thỏa mãn)
Vậy có 889 thí sinh và 35 phòng thi
Nếu bài kiểm tra của 24 thí sinh đó đều làm 2 tờ giấy thi thì số tờ giấy là:
24.2 = 48 (tờ)
Mà chỉ có 33 tờ giấy nên số tờ giấy nhiều hơn so với đề bài nếu 24 thí sinh đó đều làm 2 tờ giấy chính bằng số thí sinh làm 1 tờ giấy thi và là:
48 - 33 = 15 (thí sinh)
Số thi sinh làm 2 tờ giấy thi là:
24 - 15 = 9 (thí sinh)
Câu 1:
a) Gọi 3 bài toán đó là A, B, C
Giả sử mọi thí sinh đều không giải được bài toán A.
Nếu tồn tại 1 thí sinh chỉ giải được một bài toán, giả sử là bài toán B thì xét thí sinh này lần lượt với 59 thí sinh còn lại. Theo giả thiết ta có 59 thí sinh đó đều giải được bài toán B. Do đó cả 60 thí sinh đều giải được bài toán B.
Nếu thí sinh nào cũng giải được hai bài toán B, C thì ta có mọi thí sinh đều giải được bài toán B, C.
Nếu thí sinh nào cũng không giải được bài toán B thì tất cả các thí sinh đều giải được bài toán C.
Vậy ta có đpcm.
b) Nếu tồn tại một học sinh chỉ giải được một bài toán thì xét học sinh này với tất cả các học sinh còn lại ta có các học sinh còn lại cũng giải được bài toán này.
Nếu mỗi học sinh giải được ít nhất 2 bài toán:
Gọi số thí sinh giải được A, B mà không giải được C là x; số thí sinh giải được B, C mà không giải được A là y; số thí sinh giải được C, A mà không giải được B là z; số thí sinh giải được cả 3 bài này t. \((x,y,z,t\in\mathbb{N})\)
Rõ ràng ta có: \(x+y+z+t=60\).
Giả sử không tồn tại một bài toán mà có ít nhất 40 người giải được.
Ta có: \(\left\{{}\begin{matrix}x+y+t< 40\\y+z+t< 40\\z+x+t< 40\end{matrix}\right.\)
\(\Rightarrow2\left(x+y+z\right)+3t< 120\Rightarrow2\left(x+y+z\right)+3t< 2\left(x+y+z+t\right)\Rightarrow t< 0\) (vô lí).
Vậy giả sử sai hay ta có đpcm.
help me...!