\(16.\left(-x\right)^4=y^4\) . Tìm tỉ lệ x và y biết : ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

\(16.\left(-x\right)^4=y^4\Rightarrow\frac{\left(-x\right)^4}{y^4}=\frac{1}{16}\Rightarrow\frac{x^4}{y^4}=\frac{1}{16}\Rightarrow\left(\frac{x}{y}\right)^4=\left(\frac{1}{2}\right)^4=\left(-\frac{1}{2}\right)^4\Rightarrow\frac{x}{y}=\frac{1}{2}=-\frac{1}{2}\)

mà xy<0=>x/y=-1/2

17 tháng 1 2016

\(\Rightarrow\left[\left(\frac{1}{2}\right)^2\right]^{3x+2}=\left(\frac{1}{2}\right)^{7x-4}\Leftrightarrow\left(\frac{1}{2}\right)^{6x+4}=\left(\frac{1}{2}\right)^{7x-4}\Rightarrow6x+4=7x-4\)

7x-6x=4+4

=>x=8

vậy x=8

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

Bài 1:1) Tìm x, biết: \(4\frac{5}{9}\): \(2\frac{5}{18}\)- 7 < x < \(\left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right)\): \(\left(-21\frac{1}{2}\right)\)2) Tính giá trị của biểu thức:\(B=2x^2-5y^2+2014\)biết \(\left(x+2y^2\right)\)+ 2016 . | y + 1 | = 03) Cho x, y, z \(\ne\)0 và x - y - z = 0. Tính C = \(\left(1-\frac{z}{x}\right)^3\)\(\left(1-\frac{x}{y}\right)^3\)\(\left(1-\frac{y}{z}\right)^3\).Bài 2:a) Tìm x,...
Đọc tiếp

Bài 1:

1) Tìm x, biết: \(4\frac{5}{9}\)\(2\frac{5}{18}\)- 7 < x < \(\left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right)\)\(\left(-21\frac{1}{2}\right)\)

2) Tính giá trị của biểu thức:

\(B=2x^2-5y^2+2014\)biết \(\left(x+2y^2\right)\)+ 2016 . | y + 1 | = 0

3) Cho x, y, z \(\ne\)0 và x - y - z = 0. Tính C = \(\left(1-\frac{z}{x}\right)^3\)\(\left(1-\frac{x}{y}\right)^3\)\(\left(1-\frac{y}{z}\right)^3\).

Bài 2:

a) Tìm x, biết: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x+\frac{1}{20}\right|\)+ ........ + \(\left|x+\frac{1}{110}\right|=11x\)

b) Ba phân số có tổng bằng \(\frac{213}{70}\), các tử của chúng tỉ lệ với 3; 4; 5, các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó.

Bài 3: Cho các đa thức:

\(f\left(x\right)\)\(3x^4+2x^3-5x^2+7x-3\)và \(g\left(x\right)=x^4+6x^3-15x^2-6x-9\)

a) Tìm đa thức \(h\left(x\right)=3f\left(x\right)-g\left(x\right)\)

b) Tìm nghiệm của đa thức \(h\left(x\right)\).

Bài 4:

a) Tìm x, y, z biết: \(\frac{3x}{8}=\frac{y}{4}=\frac{3z}{16}\)và \(2x^2+2y^2-z^2=10\)

b) Tìm số tự nhiên a nhỏ nhất khác 0 sao cho khi chia a cho \(\frac{8}{9}\)và khi chia a cho \(\frac{12}{17}\)đều được kết quả là số tự nhiên.

Bài 5: Cho \(\Delta ABC\)vuông tại A, ( AB < AC ). Gọi M là trung điểm của BC, từ M kẻ đường vuông góc với tia phân giác của góc BAC tại I, cắt AB và AC lần lượt tại D, E. Từ B kẻ đường thẳng song song với AC cắt DE tại K.

a) Tính góc BKD.

b) Chứng minh rằng: \(AE=\frac{AB+AC}{2}\).

c) Kẻ AH vuông góc với BC. Biết BH = 18 cm, CH = 32 cm. Tính độ dài AB và AC.

d) Nếu trên hình vẽ so với thực tế có tỉ lệ xích là 1 : 100000. Khi đặt tại H một máy phát sóng truyền thanh có bán kính hoạt động 30 km thì các thành phố tại địa điểm A và C có nhận được tín hiệu không ? Vì sao ?

0
22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)

16 tháng 8 2015

 \(\left(x-1\right)^2+\left(y-3\right)^2=0\)

mà  \(\left(x-1\right)^2\ge0;\left(y-3\right)^2\ge0\)

nên để: \(\left(x-1\right)^2+\left(y-3\right)^2=0\) thì:

  \(x-1=y-3=0\Rightarrow x=1;y=3\)

 

16 tháng 8 2015

a)x-1=y-3=0

x=1 va y=3

b)2x-1/2=y+3/2=0

x=1/4 va y=-3/2

c)1/2x-5=y2-1/4=0

1/2.x=5 va y2=1/4

x=10 va y=1/2 hoac x=10 va y=-1/2

23 tháng 7 2019

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)

2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)

3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)

4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

23 tháng 7 2019

\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)

29 tháng 8 2017

hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi

12 tháng 9 2018

Lí luận chung cho cả 3 câu :

Vì GTTĐ luôn lớn hơn hoặc bằng 0 

a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)

b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)

c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)

\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)

\(\Rightarrow2\left(x+y+z\right)=0,2\)

\(\Rightarrow x+y+z=0,1\)

Từ đây tìm đc x, y, z