Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\sqrt{x}-3}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2.\)
Suy ra \(x\) là số chính phương lẻ.
Vì \(x< 30\) nên \(x\in\left\{1^2;3^2;5^2\right\}\)hay \(x\in\left\{1;9;25\right\}.\)
Để B có giá trị nguyên thì 5 \(⋮\sqrt{x}-1\) \(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)\) \(\Rightarrow\sqrt{x}-1\in\left\{1;-1;5;-5\right\}\)
Ta có bảng:
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
\(x\) | 4 | 0 | 36 | 16 |
Vậy \(x\in\left\{4;0;36;16\right\}\)
Để phân số \(B=\dfrac{5}{\sqrt{x}-1}\) có giá trị nguyên thì: \(5⋮\sqrt{x}-1\\ \Rightarrow\sqrt{x}-1\inƯ\left(5\right)\\ \Rightarrow\sqrt{x}-1\in\left\{\pm1;\pm5\right\}\)
Ta lập bảng sau:
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
\(x\) | 4 | 0 | 36 | 16 |
Vậy \(x\in\left\{4;0;36;16\right\}\).
a)=>x+1<0=>x<-1
x-2 =<0=> x=<2
b)x-2>0=>x>2
x+2/3>=0=>x>=-2/3
a) \(x=\pm2,1\)
b) \(x=-\dfrac{3}{4}\)
c) \(\)Không tồn tại x
d)\(x=0,35\)
a, \(\left|x\right|=2,1\)
=> \(x=\pm2,1\)
b, \(\left|x\right|=\dfrac{3}{4},x< 0\)
=> \(x=\dfrac{3}{4}\)
c, \(\left|x\right|=-1\dfrac{2}{5}\)
=> Không tồn tại x.
d, \(\left|x\right|=0,35,x>0\)
=> \(x=0,35\)