K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

vì chữ số tận cùng của 2015 là 5 nên 2015 nhân với số nào thì tận cùng vẫn là 5

2016 tận cùng là 6 nên 2016 nhân với số nào tận cùng vẫn là 6

A=5+6=11

B= tan cung la 6

AxB=11x6=66

66 ko chia het cho 5

3 tháng 4 2017

Vì sao B có tận cùng là 6

14 tháng 3 2022

Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\)\(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)\(\dfrac{2015}{2016}\) (ĐCPCM)

25 tháng 7 2018

\(A=1+3+3^2+3^3+3^4+...+3^{2015}\)

\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)

\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{2012}\left(1+3+3^2+3^3\right)\)

\(=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{2012}\right)\)

\(=40\left(1+3^4+...+3^{2012}\right)\)\(⋮\)\(5\)

\(B=2+2^2+2^3+...+2^{2016}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2013}+2^{2014}+2^{2015}+2^{2016}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+..+2^{2013}\left(1+2+2^2+2^3\right)\)

\(=\left(1+2+2^2+2^3\right)\left(2+2^5+...+2^{2013}\right)\)

\(=15\left(2+2^5+...+2^{2013}\right)\)\(⋮\)\(15\)

25 tháng 1 2017

chị kết bạn với em nha gửi lời kết bn với em nhé

25 tháng 1 2017

j zậy em hả 

5 tháng 11 2023

\(A=3+3^2+...+3^{2016}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)

\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{2015}\cdot\left(1+3\right)\)

\(A=4\cdot\left(3+3^3+...+3^{2015}\right)\)

Vậy A chia hết cho 4

_____________

\(A=3+3^2+3^3+...+3^{2016}\)

\(A=\left(3+3^2+3^3\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)

\(A=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{2014}\cdot\left(1+3+9\right)\)

\(A=13\cdot\left(3+3^4+...+3^{2014}\right)\)

Vậy A chia hết cho 13

14 tháng 2 2020

\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)

\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)

14 tháng 2 2020

\(B=\left(-2\right)+4+\left(-6\right)+8+\left(-10\right)+,...+\left(-2014\right)+2016\)

\(B=2+2+....+2\left(\text{504 số hạng 2}\right)=1008\)

15 tháng 7 2016

k cho mình

15 tháng 7 2016

mình chịu rồi