Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm là:
\(x^2-4x+m=0\)
\(\text{Δ}=\left(-4\right)^2-4m=16-4m\)
Để (P) cắt Ox tại hai điểm phân biệt thì Δ>0
=>-4m+16>0
=>-4m>-16
=>m<4
(P) cắt trục Ox tại hai điểm A,B phân biệt nên \(A\left(x_A;0\right);B\left(x_B;0\right)\)
OA=3OB
=>\(OA^2=9OB^2\)
=>\(\left(x_A-0\right)^2+\left(y_A-0\right)^2=9\left[\left(x_B-0\right)^2+\left(y_B-0\right)^2\right]\)
=>\(\left(x_A\right)^2+\left(y_A\right)^2=9x_B^2+9y_B^2\)
=>\(x_A^2-9x_B^2=y_A^2-9y_B^2\)
=>\(x_A^2-9x_B^2=0\)
=>\(\left[{}\begin{matrix}x_A=3x_B\\x_A=-3x_B\end{matrix}\right.\)
Theo Vi-et, ta có:
\(x_A+x_B=4\) và \(x_A\cdot x_B=m\)
TH1: \(x_A=3x_B\)
\(x_A+x_B=4\)
=>\(3x_B+x_B=4\)
=>\(x_B=1\)
=>\(x_A=3\)
\(m=x_A\cdot x_B=1\cdot3=3\)
TH2: \(x_A=-3x_B\)
\(x_A+x_B=4\)
=>\(-3x_B+x_B=4\)
=>\(-2x_B=4\)
=>\(x_B=-2\)
\(x_A=-3\cdot x_B=-3\cdot\left(-2\right)=6\)
\(m=x_A\cdot x_B=6\cdot\left(-2\right)=-12\)
ta có hàm số
\(y=2\left(x^2-2mx+m^2\right)-\left(2m^2+m-5\right)\ge-\left(2m^2+m-5\right)\)
vậy \(-\left(2m^2+m-5\right)=5\Leftrightarrow2m^2+m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-\frac{1}{2}\end{cases}}\)
Vậy có hai giá trị của m
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
@Nguyễn Huy Tú @Ace Legona@Akai Haruma