Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(9a^3+\frac{1}{3}+\frac{1}{3}\ge3\sqrt[3]{9a^3\cdot\frac{1}{3}\cdot\frac{1}{3}}=3a\)
\(3b^2+\frac{1}{3}\ge2\sqrt{3b^2\cdot\frac{1}{3}}=2b\)
Do đó: \(A\le\text{∑}\frac{a}{3a+2b+c-1}=\frac{a}{2a+b}\left(a+b+c=1\right)\)
\(2A\le\text{∑}\frac{2a}{2a+b}=3-\text{∑}\frac{b}{2a+b}=3-\text{∑}\frac{b^2}{2ab+b^2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(2A\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\Leftrightarrow A\le1\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)
Ngoài http://olm.vn/hoi-dap/question/779981.html còn cách khác
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(9a^3+3a^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow A\le\text{∑}\frac{a\left(\frac{1}{9a}+\frac{1}{3}+c\right)}{\left(a+b+c\right)^2}=\text{∑}\left(\frac{1}{9}+\frac{a}{3}+ac\right)\)
\(=\frac{1}{3}+\frac{a+b+c}{3}+\text{∑}ab\le\frac{1}{3}+\frac{1}{3}+\frac{\left(a+b+c\right)^2}{3}=1\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)