K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a)      Vì \(d\parallel CD\) nên \(MP\parallel CD\)

Xét tam giác ADC với \(MP\parallel CD\) có: \(\frac{{AM}}{{MD}} = \frac{{AP}}{{PC}}\,\,\left( 1 \right)\) (Định lý Thales)

Vì \(d\parallel AB\) nên \(PN\parallel AB\)

Xét tam giác ABC với \(PN\parallel AB\) có: \(\frac{{BN}}{{NC}} = \frac{{AP}}{{PC}}\,\,\left( 2 \right)\) (Định lý Thales)

Từ (1) và (2) ta có \(\frac{{AM}}{{MD}} = \frac{{BN}}{{NC}}\).

b)     Vì \(MD = 2MA\) nên \(\frac{{AM}}{{MD}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AD}} = \frac{1}{3}\)

Xét tam giác ADC với \(MP\parallel CD\) có: \(\frac{{AM}}{{AD}} = \frac{{MP}}{{DC}}\) (Hệ quả định lý Thales)

\( \Rightarrow \frac{{MP}}{{DC}} = \frac{1}{3} \Rightarrow MP = \frac{1}{3}DC = 2cm\)

Vì \(\frac{{AM}}{{AD}} = \frac{1}{3} \Rightarrow \frac{{AP}}{{AC}} = \frac{1}{3} \Rightarrow \frac{{PC}}{{CA}} = \frac{2}{3}\)

Xét tam giác ABC với \(PN\parallel AB\) có: \(\frac{{CP}}{{CA}} = \frac{{PN}}{{AB}}\) (Hệ quả định lý Thales)

\( \Rightarrow \frac{{PN}}{{AB}} = \frac{2}{3} \Rightarrow PN = \frac{2}{3}AB = \frac{8}{3}cm\)

Mà \(MN = MP + PM = 2 + \frac{8}{3} = \frac{{14}}{3}cm\).

29 tháng 7 2016

có ai giúp mk với ạ

28 tháng 7 2017

Đáp án của mik là:………

1 tháng 3 2022

gfvfvfvfvfvfvfv555

17 tháng 11 2023

óc

a:Xét hình thang ABCD có 

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét ΔDAB có 

M là trung điểm của AD

ME//AB

Do đó: E là trung điểm của BD

Xét ΔABC có 

N là trung điểm của BC

NF//AB

Do đó: F là trung điểm của AC

24 tháng 10 2021

SGK k để lm cảnh, lên Tech12 hoặc Vietjack

24 tháng 10 2021

a: Xét hình thang ABCD có 

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét ΔADC có 

M là trung điểm của AD

MF//DC

Do đó: F là trung điểm của AC

Xét ΔBDC có 

N là trung điểm của BC

NE//DC

Do đó: E là trung điểm của BD

28 tháng 9 2019

Gọi H là trung điểm DC. 

Chứng minh HE// IF( vì cùng //BC)

=> HE vuông FK ( vì FK vuông IF)

Tương tự HF// EI( vì cùng //AD)

=> HF vuông  EK( vì EK vuông IE)

Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC