Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+y)^2 =a^2
x^2 +2xy +y^2 =a^2
x^2+y^2 =a^2-2xy =a^2 -2b
x^3 +y^3 = (x+y)(x^2 -xy +y^2)
=a(a^2-2b-b)
=a(a^2-3b)
=a^3- 3ab
(x^2 +y^2)^2=(a^2-2b)^2 ( cái này tính cho x^4 + y^4)
tương tự như câu đầu tiên
x^5+ y^5 (cái đó mình không biết)
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)
\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)
\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)
b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)
\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)
\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)
1) ( x + y )3 = x3 + 3x2y + 3xy2 + y3
( x + y )3 = ( x3 + y3 ) + 3xy.( x + y )
x3 + y3 = ( x + y )3 - 3xy.( x + y )
x3 + y3 = 23 - ( 3.-1).2
x3 + y3 = 14
B = 14
2) x2 + y2 = 2xy
x2 + 2xy + y2 = 4xy
( x + y )2 = 4xy
xy = \(\frac{\left(x+y\right)^2}{4}\)
xy = 1
( x + y)2 = x2 + 2xy + y2
x2 + y2 = ( x + y )2 - 2xy
x2 + y2 = 22 - ( 2.-1)
x2 + y2 = 6
( x2 + y2 )2 = x4 + 2x2y2 + y4
x4 + y4 = ( x2 + y2 )2 - 2x2y2
x4 + y4 = ( 6)2 - 2.( 1 . 1)
x4 + y4 = 34
C = 34
a)
\(VT=\left(x^2-2^2\right)\left(x^2+4\right)\)
\(=\left(x^2-4\right)\left(x^2+4\right)\)
\(=\left(x^2\right)^2-4^2\)
\(=x^4-16\)
\(=VP\)
b)
\(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3\)
\(=x^3+y^3\)
\(=VP\)
( x + 2 )( x - 2 )( x2 + 4 )
= ( x2 - 4 )( x2 + 4 ) ( xài HĐT a2 - b2 = ( a - b )( a + b ) nhé ^^ )
= x4 - 16 ( đpcm )
( x2 - xy + y2 )( x + y )
= x3 + x2y - x2y - xy2 + xy2 + y3
= x3 + y3 ( đpcm )
Theo hằng đẳng thức đáng nhớ:
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=4^3-3.3.4=28\)