K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2021

Vì \(Ou\perp Ov\) nên giả sử PTĐT Ou và Ov lần lượt là : \(y=kx;y=-\dfrac{1}{k}x\) ( \(k\ne0\) ) 

Giả sử \(Ou;Ov\cap\left(E\right)\) lần lượt tại M ; N 

Xét PTHĐGĐ của Ou và \(\left(E\right)\) là no của pt : \(\dfrac{x^2}{a^2}+\dfrac{k^2x^2}{b^2}=1\)

\(\Leftrightarrow\dfrac{x^2\left(b^2+k^2a^2\right)}{a^2b^2}=1\) \(\Leftrightarrow x_M^2=\dfrac{a^2b^2}{b^2+k^2a^2}\)

Thấy : \(OM^2=x_M^2+y_M^2=x_M^2\left(1+k^2\right)=\dfrac{a^2b^2}{b^2+k^2a^2}\left(k^2+1\right)\)

Suy ra : \(\dfrac{1}{OM^2}=\dfrac{b^2+k^2a^2}{a^2b^2\left(k^2+1\right)}\) 

Tương tự , ta có : \(\dfrac{1}{ON^2}=\dfrac{b^2+\dfrac{1}{k^2}a^2}{a^2b^2\left(\dfrac{1}{k^2}+1\right)}=\dfrac{b^2k^2+a^2}{a^2b^2\left(1+k^2\right)}\)

Suy ra : \(\dfrac{1}{OM^2}+\dfrac{1}{ON^2}=\dfrac{\left(a^2+b^2\right)\left(k^2+1\right)}{a^2b^2\left(k^2+1\right)}=\dfrac{a^2+b^2}{a^2b^2}\) ko đổi do a ; b ko đổi

Gọi H là h/c của O lên MN ; ta có : \(\dfrac{1}{OH^2}=\dfrac{1}{OM^2}+\dfrac{1}{ON^2}=\dfrac{a^2+b^2}{a^2b^2}\)

\(\Rightarrow OH^2=\dfrac{a^2b^2}{a^2+b^2}\Rightarrow OH=\dfrac{ab}{\sqrt{a^2+b^2}}\)  ko đổi ( a > b > 0 ) 

Vì OH \(\perp\) MN nên MN luôn tiếp xúc với \(\left(O;\dfrac{ab}{\sqrt{a^2+b^2}}\right)\) cố định ( đpcm ) 

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

31 tháng 5 2021

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

31 tháng 5 2021

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

Đường tròn \((C)\) tâm \(I(a;b)\) bán kính \(R\)có phương trình

\((x-a)^2+(y-b)^2=R^2.\)

\(∆MAB ⊥ M\) \(\rightarrow \) \(AB\) là đường kính suy ra \(∆\) qua \(I\) do đó:

\(a-b+1=0 (1)\)

Hạ \(MH⊥AB\)\(MH=d(M, ∆)= \dfrac{|2-1+1|}{\sqrt{2}}={\sqrt{2}} \)

\(S_{ΔMAB}=\dfrac{1}{2}MH×AB \Leftrightarrow 2=\dfrac{1}{2}2R\sqrt{2} \)

\(\Rightarrow R = \sqrt{2} \)

Vì đường tròn qua\(M\) nên (\(2-a)^2+(1-b)^2=2 (2)\)

Ta có hệ : 

\(\begin{cases} a-b+1=0\\ (2-a)^2+(1-b)^2=0 \end{cases} \)

Giải hệ \(PT\) ta được: \(a=1;b=2\).

\(\rightarrow \)Vậy \((C) \)có  phương trình:\((x-1)^2+(y-2)^2=2\)

 

11 tháng 7 2021

giúp e với ; plz