\(2^1+3^5+4^9+...+2003^{8005}\) cho 5<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

Ai trả lời giúp mình nha!

9 tháng 8 2017

thoi minh luoi lam minh ko giai het duoc dau

9 tháng 8 2017

- Đề bài bài 4 nhầm nha. 

- Phải là : 19^x + 5^y + 1980z = 1975^430 + 2004

Bài 4:

Ta có: 1975^430 có chữ tận cùng bằng 5; suy ra 1975^430+2004 có chữ số tận cùng bằng 9. 
Mặt khác: 1980*z tận cùng bằng 0với mọi z . Giả sử tồn tại các số tự nhiên x;y;z thỏa mãn biểu thức đã cho thì 19^x+5^y phải có chữ số tận cùng bằng 9 (1) 
Số 19^x chỉ tận cùng bằng 1 hoặc 9 với mọi x; 5^y có chữ số tận cùng bằng 1(y=0) hoặc 5 
Nếu 19^x tận cùng bằng 1 thì theo (1) 5^y tận cùng bằng 8 ( vô lý) 
Nếu 19^x tận cùng bằng 9 thì theo (1) 5^y tận cùng bằng 0 ( vô lý) 
Vậy không tồn tai các số tự nhiên x;y;z để 19^x+5^y+1980*z= 1975^430+2004

cách 2

thành 1980 * z, và xét cả th số tự nhiên là 0), không biết bạn có sửa lại không 
Tôi chẳng đăng ký bản quyền làm gì nhưng làm thế là rất xấu 
--------------- 
Với tôi số tự nhiên là > 0. Nếu bạn có cả số 0 thì cũng được 
19^x + 5^y + 1980 * z= 1975^430 + 2004 ♦ 
--- 
19^x chỉ tận cùng là 1 hoặc 9: 9^0 = 1, 9*9 = 8(1), 1*9 = 9 
5^y chỉ tận cùng là 1 hoặc 5: 5^0 = 1, 5^n tận cùng là 5 với n ≥ 1 
=> VT chỉ tận cùng là 0, 2, 4 hoặc 6 
tương tự có VP tận cùng là 9 
=> không tồn tại x, y, z sao cho tm ♦