K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3

18 tháng 9 2019

Câu 1: xin sửa đề :D

CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(=\left(n^2+3n+1\right)^2\)là scp

23 tháng 12 2015

ta có

\(A=n^6-n^4+2n^3+2n^2=\left[\left(n^3\right)^2+2n^3+1\right]-\left[\left(n^2\right)^2-2n^2+1\right]\)

\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2=\left(n^3+n^2\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left(n+1\right)\left(n^2-2n+2\right)\)\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Ta có

\(n^2-2n+2>n^2-2n+1=\left(n-1\right)^2\left(1\right)\)

Mặt khác \(n^2-2n+2=n^2-2\left(n-1\right)\left(2\right)\)

Từ (1) và (2)

=>\(\left(n-1\right)^2

=>A ko phải là số chình phương

Câu 1: Cho tam giác ABC vuông tại A, AB = 4cm; AC= 5cm , các điểm D,E lấn lượt trên cạnh AB,AC sao cho BD=AE=x(cm).Tính giá trị x để SBEC nhỏ nhất.Câu 2: Chiều dài , chiều rộng của hình chữ nhật la 1 số nguyên tố và chu vi của hình chữ nhật đó là 72 cm. Tính GTLN của Shình chữ nhật đó.Câu 3: Tìm 3 số x,y,z thỏa mãnX2 +y2 +z2 +2 – 4y +6z = -14Câu 4: Cho x,y nguyên dương, thoãn mãn xy -5x +2y= 30. Tính tổng có...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A, AB = 4cm; AC= 5cm , các điểm D,E lấn lượt trên cạnh AB,AC sao cho BD=AE=x(cm).Tính giá trị x để SBEC nhỏ nhất.

Câu 2: Chiều dài , chiều rộng của hình chữ nhật la 1 số nguyên tố và chu vi của hình chữ nhật đó là 72 cm. Tính GTLN của Shình chữ nhật đó.

Câu 3: Tìm 3 số x,y,z thỏa mãn

X2 +y2 +z2 +2 – 4y +6z = -14

Câu 4: Cho x,y nguyên dương, thoãn mãn xy -5x +2y= 30. Tính tổng có GT x.

Câu 5: Cho a+ b = 3; a2 +b2 =7. Giá trị biểu thức: a4+b4.

Câu 6: GTLN của biểu thức: P= (x4+3y2+25)2

Câu 7: Số dư khi chia đa thức f(x) = 8x3-1 chi g(x) = 4x2 +2x +1

Câu 8: Tổng số đo góc ngoài và góc trong của 1 đa giác bằng 504. Tính số cạnh đa giác đó.

Câu 9: Cho x,y,z thõa mãn x+y+z=3. Tính GTLN P= xy+yz+zx

Câu 10 :Tìm số tự nhiên n biết: 1+2+3+…+232=2n-1

Câu 11: Tính tổng các số nguyên biết: IxI <2016

Câu 12: Tìm số tận cùng của tích A=(2160 -1)(152 -73 )

Câu 13: x2 -8x +15=0 .Tìm x

Câu 14: Tìm số dư khi chia 19992016 : 5

Câu 15: Tìm số dư khi chia : 513+511-510-40 cho 43

Câu 16: Tính tổng các số nguyên dương x sao cho x+56 ;x+113 đều là số chính phương

Câu 17: Tính GTBT A = 12 -22+32-42+…-20162+20172

Câu 10: Tìm số cạnh của đa giác có 35  đường chéo

1
24 tháng 2 2017

Mình sắp thi Violimpic Toán Cấp Huyện rồi...

Giúp mình với♥♥♥

có cần full ko :3

11 tháng 4 2018

có chứ anh

20 tháng 4 2019

bài 1:

thấy B chia 4 dư 2

=> B ko phải là scp

20 tháng 4 2019

Tại sao B chia 4 dư 2 ?