Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀi 1
Để A \(\in\) Z
=>\(\left(n+2\right)⋮\left(n-5\right)\)
=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)
=>\(7⋮\left(n-5\right)\)
=>\(n-5\in\left\{1;7;-1;-7\right\}\)
=>\(n\in\left\{6;13;4;-2\right\}\)
Vậy \(n\in\left\{6;13;4;-2\right\}\)
a
Để A là phân số thì \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)
b
A là số nguyên thì \(\frac{2n+4}{2n-1}=\frac{2n-1+5}{2n-1}=1+\frac{5}{2n+1}\inℤ\)
\(\Rightarrow\frac{5}{2n-1}\inℤ\)
\(\Rightarrow2n-1\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{1;6;0;-2\right\}\)
c
\(A=\frac{1}{2}\Rightarrow\frac{2n+4}{2n-1}=\frac{1}{2}\Rightarrow4n+8=2n-1\Rightarrow2n+9=0\Rightarrow n=\frac{9}{2}\)
mấy câu này dễ nhưg làm ra hơi dài đợi chị chút nhé
chị ấn máy tính chắc cx nhanh
nhớ cho chị
1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)và\(3n+2\)là nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)
câu 1 :
gọi d = ƯCLN ( 2n + 1; 3n +2 )
=> 2n + 1 chia hết cho d => 3 ( 2n +1 ) chia hết cho d
3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d
ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4 - [ 6n + 3 ] chia hết cho d
=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản
Để A thuộc luôn tồn tại mà n thuộc Z suy ra n+8 chia hết cho 2n-5
suy ra (n+8).2 chia hết cho n+8 hay2n+16
Suy ra (2n+16)-(2n-5) chian hết cho 2n-5
suy ra 21 chia hết cho 2n-5suy ra 2n-5 thuộc Ư(21)={-21;;21;3;-3;7;-7;1;-1}
suy ra 2n thuộc{-16;26;8;2;12;-2;6;4}
suy ra n thuộc{-8;13;4;1;6;-1;3;2}
Vậy n thuộc{-8;13;4;1;6;-1;3;2}
4n - 1 \(⋮n-2\)
4n - 8 + 7 \(⋮n-2\)
=> 7\(⋮n-2\)
=> n-2\(\in\text{Ư}\left(7\right)\)
=> n - 2\(\in\left\{-7;-1;1;7\right\}\)
a ) 2n + 5 và 3n + 7 nguyên tố cùng nhau
Gọi ƯCLN ( 2n + 5 ; 3n + 7 ) = d
⇒ 2n + 5 ⋮ d và 3n + 7 ⋮ d
⇒ 3.( 2n + 5) ⋮ d ⇒ 6n + 15 ⋮ d
2.( 3n + 7) ⋮ d 6n + 14 ⋮ d
⇒ ( 6n + 15 ) - ( 6n + 14 ) ⋮ d
⇒ 1 ⋮ d ⇒ d ∈ Ư(1) ⇒ d=1
Vì ƯCLN ( 2n + 5 ; 3n + 7 ) = 1
nên 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau
d) \(\dfrac{n\left(n+1\right)}{2}\) và 2n + 1 nguyên tố cùng nhau
Gọi ƯCLN ( \(\dfrac{n\left(n+1\right)}{2}\)và 2n + 1 ) = d
⇒ \(\dfrac{n\left(n+1\right)}{2}\) ⋮ d và 2n + 1 ⋮ d
⇒4. \(\dfrac{n\left(n+1\right)}{2}\) ⋮ d ⇒ 2n ( n + 1) ⋮ d
n ( 2n + 1) ⋮ d ⇒ 2n2 + n ⋮ d
⇒ 2n2 + 2n ⋮ d
2n2 + n ⋮ d
⇒ ( 2n2 + 2n ) - ( 2n2 + n ) ⋮ d
⇒ n ⋮ d
Vì n ⋮ d ⇒ 2n ⋮ d mà 2n +1 ⋮ d nên 1 ⋮ d
⇒ d = 1
Vì ƯCLN ( \(\dfrac{n\left(n+1\right)}{2}\)và 2n + 1 =1 nên \(\dfrac{n\left(n+1\right)}{2}\)và 2n + 1 là hai số nguyên tố cùng nhau
Câu 1 : thiếu đề
Câu 2 :
Vì : \(4n-3⋮2n-1\)
Mà : \(2n-1⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)⋮2n-1\)
\(\Rightarrow4n-2⋮2n-1\)
\(\Rightarrow\left(4n-3\right)-\left(4n-2\right)⋮2n-1\)
\(\Rightarrow4n-3-4n+2⋮2n-1\)
\(\Rightarrow-1⋮2n-1\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow2n\in\left\{0;2\right\}\Rightarrow n\in\left\{0;1\right\}\)
Vậy \(n\in\left\{0;1\right\}\)
DDeer A cos gias trij nguyeen thif:
n+3 \(⋮\) 2n -2
=> 2, (n+3) \(⋮\) 2n - 2
=> 2n +6 \(⋮\) 2n - 2
=> (2n-2).8 \(⋮\) 2n -2
=> 8\(⋮\) 2n -2
Vì 2n - 2 là số chẵn và 2n -2 > -2
=> 2n - 2 \(\in\) {2; -2; 4; 8}
=> 2n \(\in\) {4; 0; 6; 10}
=> n \(\in\) {2; 0; 3; 5}
Còn lại ta có n = 5 thì \(A=\dfrac{n+3}{2n-2}\) (không có giá trị nguyên)