Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Vì 3411 viết được dưới dạng 4n+3 mà chữ số tận cùng của số 7 là 7
nên theo cách tìm chữ số tận cùng: số 73411 có chữ số tận cùng là 3
Câu 2:
Số 2011 có tận cùng là chữ số 1 nên khi nâng lên luỹ thừa thì chữ số tận cùng vẫn là 1
Câu 3:
Số 5 khi nâng lên luỹ thừa cũng có chữ số tận cùng là 5
Câu 4:
Số 10110 có chữ số tận cùng là 1
Số 10211 có chữ số tận cùng là 8
Số 10312 có chữ số tận cùng là 1
Số 10413 có chữ số tận cùng là 4
Số 10514 có chữ số tận cùng là 5
Tổng đó có chữ số tận cùng là: 1+8+1+4+5=19
Vậy chữ số tận cùng là
coi nâng cao và pt toan 8 là bít dễ
chuyên đề tính chất chia hết của só ng
Tự làm chứ,,,,ai đi chép sách thế hả.....Giống tui z....Mỗi tội lười ,,,mệt lém @@@
ab là số cần tìm
b-a=4(1)
ab +ba =132 (2) gọi b+a =c2 ,(2)<=> b+a= c*10+2 <=> (c*10+2)*10+c*10+2=132<=> 110c+22=132 <=> c=1
=> b+a=12=>a=12-b
thế a=12-b vào (1) : b-12+b=4=> b=8 => a=4
74=2401 tận cùng là 01 mà 2401n luôn tận cùng là 01
=>72012=74.503=2401503 tận cùng là 01
73 tận cùng là 43
=> 72015 tận cùng là 43
Gọi số cần tìm là ab ( có gạch ngang trên đầu)
Ta có:
a = 3b (1)
Nếu đổi chỗ hai chữ số ta được số mới là ba
Vì số mới nhỏ hơn số ban đầu 18 đơn vị
=> ab - ba = 18
=> 10a + b - 10b - a = 18
=> 9a - 9b = 18
=> a - b = 2 (2)
Từ (1) và (2) => a= 3; b = 1
Số cần tìm là 31
Gọi chữ số hàng đơn vị là x (0 < x <9) => chữ số hàng chục là 3x
Số ban đầu có dạng 10.3x + x = 31x
Sau khi đổi chỗ số mới có dạng 10.x + 3x = 13x
Vì số mới nhỏ hơn số đã cho 18 nên có pt 31x - 13x = 18 <=> 18x = 18 => x = 1 (TMĐK)
\(\Rightarrow\)chữ số hàng chục là 3. Vậy số cần tìm là 31.
Ta có các số tự nhiên có 2 chữ số mà chữ số hàng chục gấp ba lần chữ số hàng đơn vị: 93; 62; 31
Ta lần lượt thử các số:
Viết ngược của 31 là 13, kém số ban đầu: 31 - 13 = 18 (sai)
Viết ngược của 62 là 26, kém số ban đầu: 62 - 26 = 36 (sai)
Viết ngược của 93 là 39, kém số ban đầu: 93 - 39 = 54 (đúng)
Vậy số ban đầu là 93.
Đáp số: 93
Hoàng Phúc giải sai rồi. \(23^{2005}\) đồng dư 23 (mod 10) chỉ suy ra tận cùng là 3 thôi.
Câu 1: \(gcd\left(23,100\right)=1\) nên theo định lí Euler, \(23^{\phi\left(100\right)}=23^{40}\) đồng dư 1 (mod 100)
Lũy thừa 5 hai vế ta có \(23^{2000}\) đồng dư 1 (mod 100). Còn \(23^5\) đồng dư 43 (mod 100)
Vậy \(23^{2005}\) đồng dư 43 (mod 100) nên có chữ số hàng chục là 4.
Câu 2: \(23^3\) đồng dư 67 (mod 100) nên \(23^{2008}\) đồng dư \(43.67\) đồng dư 81 (mod 100)
Vậy số này có chữ số hàng chục là 81.
Câu 4: Bạn hãy thử chứng minh \(2011^{335}\) đồng dư 1 (mod 10000). Khi đó \(2011^{2010}\) cũng đồng dư 1 (mod 10000) và 4 chữ số tận cùng của số này sẽ là 0001.
Câu 3 đang bí. Sorry!
23^4 đồng dư 1 (mod10)
=>(23^4)^501 đồng dư 1 (mod10)
=>23^2004 đồng dư 1 (mod10)
=>23^2004.23 đồng dư 23 (mod10)
=>23^2005 đồng dư 23 (mod10)
Vậy c/s hàng chục của ... là 3
tương tự