\(\frac{a+1}{3a+4}\)chứng tỏ rằng phân số có dạng trên là phân số tối giản

c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2020

câu 1b

Gọi d là ƯCLN (3n-7, 2n-5), d thuộc N*

Ta có : 3n-7 chia ht cho d , 2n_5 chia ht cho d

suy ra: 2(3n-7) chia ht cho d ,  3(2n-5) chia ht cho d

suy ra 6n-14 chia ht cho d, 6n-15 chia ht cho d

dấu suy ra [(6n -15) - (6n-14)] chia ht cho d dấu suy ra 1 chia ht cho d suy ra d =1

Vậy......

          

18 tháng 5 2020

1) b. Để chứng tỏ \(\frac{3n-7}{2n-5}\) là phân số tối giản 

Ta cần chứng minh: ( 3n - 7; 2n - 5 ) = 1 

Thật vậy: ( 3n - 7 ; 2n - 5 ) = ( 2n - 5 ; ( 3n - 7 ) - ( 2n - 5 ) )  = ( 2n - 5; n - 2 ) = ( n - 2; n - 3 ) = ( n - 2; 1 ) = 1

=> \(\frac{3n-7}{2n-5}\) là phân số tối giản 

3) \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{12}\)

Ta có: \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\left(\frac{1}{5}+\frac{1}{7}\right)+\frac{1}{6}=\frac{12}{35}+\frac{1}{6}>\frac{12}{36}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2}\)

\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}=\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}\right)>\frac{1}{3}+\frac{1}{6}=\frac{1}{2} \)

=> A > 1/2 + 1/2 + 1/2 + 1/2 = 2

1/ Tính tổnga)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)b)\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)c)\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008+2010}\)2/  Chứng tỏ rằng \(\frac{2n+1}{3n+2}\) và\(\frac{2n+3}{4n+8}\)là các phân số tối giản3/ Cho \(A=\frac{n+2}{n-5}\)\(\left(n\in Z;n\ne5\right)\)Tìm n để \(A\in Z\)4/ Chứng mình...
Đọc tiếp

1/ Tính tổng

a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

b)\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

c)\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008+2010}\)

2/  Chứng tỏ rằng \(\frac{2n+1}{3n+2}\) và\(\frac{2n+3}{4n+8}\)là các phân số tối giản

3/ Cho \(A=\frac{n+2}{n-5}\)\(\left(n\in Z;n\ne5\right)\)Tìm n để \(A\in Z\)

4/ Chứng mình rằng:

 a) \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)\(\left(n,a\inℕ^∗\right)\)

 b) Áp dụng câu a tính:

     \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)         \(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

     \(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

5/ Với giá trị nào của \(x\in Z\)các phân số sau có giá trị là một số nguyên

  a)\(A=\frac{3}{x-1}\)      b)\(B=\frac{x-2}{x+3}\)      c)\(C=\frac{2x+1}{x-3}\)       d)\(D=\frac{x^2-1}{x+1}\)

9
11 tháng 5 2018

a,\(\frac{2}{1.3}+...\frac{2}{99.101}\)

\(=\frac{3-1}{1.3}+...+\frac{101-99}{99.101}\)

\(=\frac{3}{1.3}-\frac{1}{1.3}+...+\frac{101}{99.101}-\frac{99}{99.101}\)

\(=\frac{1}{1}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}\)

\(\frac{100}{101}\)

11 tháng 5 2018

Mình cần gấp, ai trả lời nhanh nhất mình k cho

19 tháng 4 2018

a) ta có:

\(\frac{n+1}{2n+3}\)là phân số tối giản thì:

\(\left(n+1;2n+3\right)=d\)

Điều Kiện;d thuộc N, d>0

=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)

=>2n+3-(2n+2):d

2n+3-2n-2:d

hay 1:d

=>d=1

Vỵ d=1 thì.....

19 tháng 4 2018

Bài 2 :

Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5

Mà n-5 chia hết cho n-5

=> (n+2) - (n-5) chia hết cho n-5

=> (n-n) + (2+5) chia hết cho n-5

=> 7 chia hết cho n-5

=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }

Ta có bảng giá trị

n-51-17-7
n6412-2
A8-620
KLTMĐKTMĐKTMĐKTMĐK

Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên

 

8 tháng 8 2019

Câu 1:

Gọi \(\left(3n+2;2n+1\right)=d\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản.

8 tháng 8 2019

Bìa 2:

a) \(2xy-5x+2y=148\)

\(\Leftrightarrow x\left(2y-5\right)+2y-5=143\)

\(\Leftrightarrow\left(2y-5\right)\left(x+1\right)=143\)

LÀM NỐT

4 tháng 3 2019

Bài 1 : \(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\)

* Ta có : \(\frac{-4}{8}=\frac{x}{-10}\)

\(\Rightarrow(-4)(-10)=x\cdot8\)

\(\Rightarrow x=\frac{(-4)\cdot(-10)}{8}=5\)

* Ta có : \(\frac{-4}{8}=\frac{-7}{y}\)

\(\Rightarrow-4\cdot y=(-7)\cdot8\)

\(\Rightarrow-4\cdot y=-56\)

\(\Rightarrow y=(-56):(-4)=14\)

* Ta có : \(\frac{-4}{8}=\frac{z}{-24}\)

\(\Rightarrow(-4)\cdot(-24)=z\cdot8\)

\(\Rightarrow96=z\cdot8\)

\(\Rightarrow z=96:8=12\)

Vậy : ...

P/S : Lần sau nhớ đăng 1 hay 2 bài thôi chứ nhiều quá làm sao hết

4 tháng 3 2019

\(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\)

\(\text{ Ta có : }\frac{-4}{8}=\frac{-1}{2};\frac{x}{-10}=\frac{-x}{10};\frac{z}{-24}=\frac{-z}{24}\)

\(\text{+) }\frac{-1}{2}=\frac{-x}{10}\)

\(\Leftrightarrow\left(-1\right).10=2.\left(-x\right)\)

\(\Leftrightarrow-x=\frac{\left(-1\right).10}{2}\)

\(\Leftrightarrow-x=-5\)

\(\Leftrightarrow x=5\)

\(\text{+) }\frac{-1}{2}=\frac{-7}{y}\)

\(\Leftrightarrow\left(-1\right).y=2.\left(-7\right)\)

\(\Leftrightarrow y=\frac{2.\left(-7\right)}{-1}\)

\(\Leftrightarrow y=14\)

\(\text{+) }\frac{-1}{2}=\frac{-z}{24}\)

\(\Leftrightarrow\left(-1\right).24=2.\left(-z\right)\)

\(\Leftrightarrow-z=\frac{\left(-1\right).24}{2}\)

\(\Leftrightarrow-z=-12\)

\(\Leftrightarrow z=12\)

5 tháng 6 2017

Bạn gì ơi đăng thì đăng ít bài 1 thôi bạn đăng nhiều thế chẳng ai làm hết đc đâu

5 tháng 6 2017

Mình làm bài 4 

Ta có ; 7n và 7n + 1 là 2 số nguyên liên tiếp 

Mà ƯCLN của 2 số nguyên liên tiếp luôn luôn bằng 1

Vậy phân số : \(\frac{7n}{7n+1}\) luôn luôn tối giản với mọi n

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)                     B = \(\frac{5}{1.3}\)+ \(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C...
Đọc tiếp

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)

                     B = \(\frac{5}{1.3}\)\(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)

2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)

3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:

a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C = \(\frac{2x+1}{x-3}\)

4. Cho S =\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+ ... +\(\frac{1}{10^2}\). Chứng minh rằng \(\frac{9}{10}\)< S < \(\frac{9}{22}\)

5. Tìm số nguyên \(n\)để biểu thức \(A=\frac{n+1}{n+5}\)đạt 

a) Giá trị lớn nhất?

b) Giá trị nhỏ nhất?

6. Tìm số nguyên \(x\),\(y\)biết:

a) \(\frac{x}{2}\)\(\frac{2}{y}\)\(\frac{1}{2}\)

b) \(\frac{3}{x}\)\(\frac{y}{3}\)+\(=\frac{5}{6}\)

9
8 tháng 4 2021

1)

A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)

A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)

A = \(\frac{1}{1}-\frac{1}{101}\)

A = \(\frac{100}{101}\)

Vậy A = \(\frac{100}{101}\)

B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}.\frac{100}{101}\)

B = \(\frac{250}{101}\)

Vậy B = \(\frac{250}{101}\)

8 tháng 4 2021

2) 

Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)

\(\Rightarrow d=1\)

Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản

Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ...