\(x^2-xy+y^2=3\)

   ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

Bài 2 : 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)

Mà \(2018=a+b+c\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)

\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\left(b+c\right)=0\)

TH1 : \(a+b=0\Leftrightarrow a=-b\)

\(M=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{c^{2014}}\)

Mà \(a+b+c=2018\)

\(\Leftrightarrow-b+b+c=2018\)

\(\Leftrightarrow c=2018\)

Khi đó \(M=\frac{1}{2018^{2017}}\)

Các trường hợp còn lại tương tự

Kết quả cuối cùng : \(M=\frac{1}{2018^{2017}}\)

6 tháng 4 2019

Câu hỏi của nguyễn thị phượng - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo bài 2 ở link này nhé!

22 tháng 12 2017

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath

23 tháng 12 2017

Còn bài số 2 thì sao cô??

27 tháng 9 2017

a) \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6}{1-x}\)

\(=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{4x^2-3x+17+2x^2-x-2x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=-\frac{12}{x^2+x+1}\)

b) \(\frac{1}{x^2-x+1}-\frac{x^2+2}{x^3+1}+1=\frac{x+1-x^2-2+x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x-x^2+x^3}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x}{x+1}\)

c) \(N=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)

\(N=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)

\(N=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)

\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac+abc^2+abc}\)

\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac\left(1+bc+b\right)}\)

\(N=\frac{1+b}{b+1+bc}+\frac{bc}{1+bc+b}\)

\(N=\frac{1+b+bc}{b+1+bc}\)

\(N=1.\)

29 tháng 3 2020

Bài 5 :

a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)

=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)

=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

=> \(36x+3=0\)

=> \(x=-\frac{1}{12}\)

Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)

b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)

=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)

=> \(35x-5+60x-96+6x=0\)

=> \(101x-101=0\)

=> \(x=1\)

Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)

c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)

=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)

=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)

=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)

=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)

=> \(-64x+123=0\)

=> \(x=\frac{123}{64}\)

Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)

1 tháng 4 2020

Giải các pt sau:

a) (x+4)(2x-3)=0
TH1: x+4=0 => x=-4
TH2 : 2x-3=0 => 2x=3 =>x=3/2

1 tháng 4 2020

b.

3x-1=7-x
=>3x-1-(7-x)=0
=>3x-1-7+x=0
=>4x-8=0
=>4x=8
=>x=2

25 tháng 4 2017

từ gt suy ra: (1/a+1/b)+(1/c+1/a+b+c)=0
quy đồng ta đc: \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\) -->a=-b --> thay vào ta đc dpcm
tương tự vs các TH b=-c ; c=-a

25 tháng 4 2017

mình sửa tí trên kia là 1/c-1/a+b+c nhé

12 tháng 8 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-\left(a+b+c\right)}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{ac+bc+c^2}\)

\(\Leftrightarrow-\left(a+b\right)ab=\left(a+b\right)\left(ac+bc+c^2\right)\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+\left(a+b\right)ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

=> a = - b hoặc b = - c hoặc c = - a 

Xét a = - b ta có \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{c^{2017}}\)(1)

\(\frac{1}{a^{2017}+b^{2017}+c^{2017}}=\frac{1}{\left(-b^{2017}+b^{2017}\right)+c^{2017}}=\frac{1}{c^{2017}}\)(2)

Từ (1);(2) \(\Rightarrow\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}+b^{2017}+c^{2017}}\)

Xét tiếp 2 TH b = - c hoặc c = - a nữa ta có đpcm nha