\(\left(x+2017\right)^5\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

Ta có:

\(\hept{\begin{cases}P=\left(x+2017\right)^5+\left(2y-2018\right)^5+\left(3z+2019\right)^5\\S=\left(x+2017\right)+\left(2y-2018\right)+\left(3z+2019\right)\end{cases}}\)

Đặt \(x+2017=a;2y-2018=b;3z+2019=c\)

\(\Rightarrow\hept{\begin{cases}P=a^5+b^5+c^5\\S=a+b+c\end{cases}}\)

Ta có:

\(P-S=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)⋮30\)(cái này chứng minh đơn giản nhé)

Mà \(P⋮30\)\(\Rightarrow S⋮30\)

10 tháng 1 2018

2/ P với Q không có liên hệ với nhau nha. Chỉ có P với S mới có liên hệ với nhau nha.

16 tháng 11 2021

Dễ mà tự làm đi =))

1 tháng 3 2018

a) Giả sử AB < AC.  (Các trường hợp khác chứng minh tương tự)

Ta có tam giác CEF cân tại C nên \(\widehat{CEF}=\frac{180^o-\widehat{C}}{2}\)

\(\Rightarrow\widehat{MEB}=\frac{180^o-\widehat{C}}{2}\)

Ta có \(\widehat{MIB}=\widehat{IAB}+\widehat{IBA}=\frac{\widehat{A}+\widehat{B}}{2}=\frac{180^o-\widehat{C}}{2}\)

Hay \(\widehat{MEB}=\widehat{MIB}\). Suy ra tứ giác EMBI là tứ giác nội tiếp.

\(\widehat{IMB}=\widehat{IEB}=90^o\Rightarrow MB\perp AI.\)

b) Chứng minh tương tự \(\widehat{ANI}=90^o\Rightarrow\) tứ giác ANMB nội tiếp đường tròn đường kính AB cố định.

Mà \(\widehat{MBN}=90^o-\widehat{MIB}=\frac{\widehat{ACB}}{2}=\frac{\alpha}{2}=const\)

Do MN là dây cung chắn một góc không đổi trên đường tròn đường kính AB nên độ dài MN không đổi.

c) Gọi O là trung điểm AB thì \(\widehat{MON}=2.\widehat{MBN}=\alpha\)  

Do tứ giác IMBD nội tiếp nên \(\widehat{IDM}=\widehat{IBM}=\frac{\alpha}{2}\)

Tương tự : \(\widehat{IDN}=\frac{\alpha}{2}\)

Do đó \(\widehat{MDN}=\alpha=\widehat{NOM}\)

Suy ra tứ giác MNDO nội tiếp hay O thuộc đường tròn ngoại tiếp tam giác DMN.

Do đó đường tròn ngoại tiếp tam giác DMN luôn đi qua điểm O cố định khi C thay đổi.

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.b/ CM: EM = EFc/ Gọi I là tâm đường tròn ngoại tiếp...
Đọc tiếp

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.

a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.

b/ CM: EM = EF

c/ Gọi I là tâm đường tròn ngoại tiếp tam giác DMF. CM góc ABI có số đo không đổi khi M di động trên cung \(\widebat{BD}\)

Bài 2: Cho tam giác đều ABC nội tiếp trong đường tròn (O). Một đường thẳng d thay đổi đi qua A, cắt (O) tại điểm thứ hai là E, cắt hai tiêp tuyến kẻ từ B và C của đường tròn (O) lần lượt tại M và N sao cho A,M,N nằm ở cùng nửa mặt phẳng bờ BC. Gọi giao điểm của hai đường thẳng MC và BN tại F. CMR:

a/ Hai tam giác MBA và CAN dồng dạng và tích MB.CN không đổi.

b/ Tứ giác BMEF nội tiếp trong một đường tròn.

c/ Đường thẳng EF luôn đi qua một điểm cố định khi (d) thay đổi.

0
23 tháng 1 2019

A B C O O' H P M E F G I K Q T S A 0 R

a) Gọi O' là đối xứng của O qua B ta có O'B=R (không đổi). Dựng đường tròn (O',R) thì (O') cố định.

Ta sẽ chứng minh M thuộc (O'). Thật vậy:

Xét \(\Delta\)ABO và \(\Delta\)MBO' có: ^ABO = ^MBO' (Đối đỉnh); BO=BO'; BA=BM => \(\Delta\)ABO = \(\Delta\)MBO' (c.g.c)

=> OA = O'M (2 cạnh tương ứng). Mà OA = R nên O'M = R => M thuộc đường tròn (O';R)

Vậy M luôn nằm trên (O';R) cố định (đpcm).

b) Lấy T là trung điểm đoạn AH. Kẻ đường kính FR của (O). Gọi EF cắt AG tại K.

Dễ thấy IT là đường trung bình trong \(\Delta\)AHC => IT // AC => IT vuông góc AB (Do ^BAC=900)

Xét \(\Delta\)BAI: AH vuông góc BI; IT vuông góc AB (cmt), T thuộc AH => T là trực tâm \(\Delta\)BAI

=> BT vuông góc AI. Xét \(\Delta\)MAH: T trung điểm AH, B trung điểm AM => BT // MH

Do đó: AI vuông góc MH hay AG vuông góc EF tại K. Áp dụng ĐL Pytagore:

\(AF^2+FG^2+GE^2+EA^2=2\left(KA^2+KF^2+KG^2+KE^2\right)=2\left(AF^2+GE^2\right)\)(*)

Ta có EF vuông góc ER và EF vuông góc AG => AG // ER => Tứ giác AERG là hình thang cân => GE = AR

Từ đó (*) trở thành: \(AF^2+FG^2+GE^2+EA^2=2\left(AF^2+AR^2\right)=2\left(2R\right)^2=8R^2=const\)

Vậy biểu thức trên có giá trị ko đổi khi A di chuyển (đpcm).

c) Kẻ HQ vuông góc cạnh AC. Gọi S là tâm ngoại tiếp \(\Delta\)BCP. Gọi bán kính đường rtonf (BCP) là R0

Ta có: AP.AB = AQ.AC (=AH2) (Theo hệ thức lượng) => Tứ giác BPQC nội tiếp hoặc Q nằm trên (BCP)

=> S nằm trên trung trực của PQ. Dễ có T là trung điểm PQ (Vì tứ giác APHQ là hcn)

Nên ST vuông góc PQ tại T. Theo ĐL Pytagore (cho \(\Delta\)PTS) có: \(R_0=SP=\sqrt{PT^2+ST^2}\)(1)

Mặt khác: ^OAC = ^OCA = ^APQ => OA vuông góc PQ. Mà ST vuông góc PQ => OA // ST

Kết hợp với AT // OS (Cùng vuông góc BC) => Tứ giác ATSO là hbh => ST = OA = R (2)

Từ (1) và (2) => \(R_0=\sqrt{PT^2+R^2}=\sqrt{\frac{AH^2}{4}+R^2}\)(Vì PT=PQ/2=AH/2)

=> R0 lớn nhất <=> AH lớn nhất <=> A là điểm chính giữa cung BC của (O). Khi đó AH < R

Vậy nên \(R_0\le\sqrt{\frac{R^2}{4}+R^2}=\frac{R\sqrt{5}}{2}=const\). Đạt được khi A trùng với trung điểm cung BC (A0).

28 tháng 1 2019

A B C D E I S O

1) Xét đường tròn (O) đường kính CD => ^CED = 900 => ^DEB = 900

Xét tứ giác ADEB có: ^BAD + ^ DEB = 900 + 900 = 1800 => Tứ giác ADEB nội tiếp 

Hay 4 điểm A,D,E,B cùng thuộc một đường tròn (đpcm).

2) Tứ giác ADEB nội tiếp => ^DEA = ^DBA. Tương tự: ^DEI = ^DCI

Ta có: Tứ giác ABCI nội tiếp của đường tròn đường kính BC (Do ^BAC = ^BIC = 900)

=> ^DBA = ^DCI. Từ đó, suy ra: ^DEA = ^DEI => ED là phân giác ^AEI (đpcm).

3) Dễ thấy DE, CI, BA là 3 đường cao của \(\Delta\)BCD nên AB,CI,DE đồng quy (tại trực tâm \(\Delta\)BCD) (đpcm).

4) Xét \(\Delta\)ABC có vuông tại A: \(\tan\widehat{ABC}=\frac{AC}{AB}=\sqrt{2}\Rightarrow AB=\frac{AC}{\sqrt{2}}\)(theo gt)

Để EA là tiếp tuyến của (CD) thì ^AED = ^DCE. Hay ^ABD = ^ACB (Vì ^AED=^ABD)

<=> \(\Delta\)ADB ~ \(\Delta\)ABC (g,g) <=> \(AB^2=AD.AC\) <=> \(\left(\frac{AC}{\sqrt{2}}\right)^2=AD.AC\)

<=> \(AD=\frac{AC}{2}\)<=> D là trung điểm cạnh AC.

Vậy D là trung điểm AC thì EA là tiếp tuyến của (CD).

BÀI 1:Cho ABC cân tại A , Kẻ\(AH⊥BC\left(H\in BC\right)\) ,biết AB =25cm , BC = 30cm.a) TừH kẻ\(HI⊥AB\left(I\in AB\right)\) và kẻ \(ID⊥AH\left(D\in AH\right)\)Chứng minh rằng: IA.IB = AH.DHb) Tính AIBÀI 2 Cho tam giác ABC (AB>AC ; góc BAC >90o) I;Ktheo thứ tự là trung điểm của AB , AC.Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai D;tia BA cắt đường tròn (K) tại điểm thứ hai E ,tia CA cắt đường tròn...
Đọc tiếp

BÀI 1:Cho ABC cân tại A , Kẻ\(AH⊥BC\left(H\in BC\right)\) ,biết AB =25cm , BC = 30cm.

a) TừH kẻ\(HI⊥AB\left(I\in AB\right)\) và kẻ \(ID⊥AH\left(D\in AH\right)\)

Chứng minh rằng: IA.IB = AH.DH

b) Tính AI

BÀI 2 Cho tam giác ABC (AB>AC ; góc BAC >90o) I;Ktheo thứ tự là trung điểm của AB , AC.Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai D;tia BA cắt đường tròn (K) tại điểm thứ hai E ,tia CA cắt đường tròn (I) tại điểm thứ hai F.

a)CMR:3 điểm B;C;D thẳng hàng

b)CMR: Tứ giác BFEC nội tiếp 

c)CM:3 đường thẳng AD,BF,CE đồng quy?

BÀI 3 Cho tam giác ABC nhọn nội tiếp đường tròn (O), BD và CE là hai đường cao của tam giác , chúng cắt nhau tại H và cắt đường tròn (O) lần lượt ở D' và E'.Chứng minh :

a)Tứ giác BEDC nội tiêp 

b)DE song song D'E'

c)Cho BD cố định.Chứng minh rằng khi A di động trên cung lớn AB sao cho tam giác ABC là tam giác nhọn thì bán kính đường tròn ngoại tiếp tam giác ADE không đổi

0