Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tóm tắt
\(S_1=24km\)
\(V_1=12km\)/\(h\)
\(S_2=12km\)
\(V_2=45'=0,75h\)
_______________
a) \(t_1=?\)
b) \(V_{TB}\)
Giải
a) Thời gian người đó đạp xe trên quãng đường đầu là: \(t_1=\frac{S_1}{V_1}=\frac{24}{12}=2\left(h\right)\)
b) Ta có công thức tính vận tốc trung bình là: \(V=\frac{S_1+S_2+....+S_n}{t_1+t_2+t_3+....+t_n}\)
Vậy vận tốc trung bình của người đó trên quãng đường là:
\(V_{TB}=\frac{S_1+S_2}{t_1+t_2}=\frac{24+12}{2+0,75}\approx13\)(km/h)
Bài 2: Tóm tắt
\(S_1=600m=0,6km\)
\(t_1=2'=\frac{1}{30}\left(h\right)\)
\(S_2=10,8km\)
\(t_2=0,75h\)
_________________
a) \(V_1=?;V_2=?\)
b) \(S_{KC}=?\)
Giải
a) Vận tốc của người thứ nhất là: \(V_1=\frac{S_1}{t_1}=\frac{0,6}{\frac{1}{30}}=18\)(km/h)
Vận tốc của người thứ 2 là: \(V_2=\frac{S_2}{t_2}=\frac{10,8}{0,75}=14,4\) (km/h)
=> Người thứ nhất đi nhanh hơn người thứ 2.
b) Do đi cùng lúc => thời gian đi của 2 người là như nhau và vận tốc đã cho
=> Hai người cách nhau số km là: \(S-t\left(V_1+V_2\right)=S-\frac{1}{3}\left(18+14,4\right)=S-10,8\)
Theo đề thì còn cần phải dựa vào khoảng cách của 2 người khi 2 người bắt đầu đi nữa.
a) Thời gian người đó đạp xe trên quãng đường thứ nhất là :
24 : 12 = 2 (giờ)
b) Đổi : 45 phút = 0,75 giờ
=> Vận tốc trung bình của người đi xe đạp trên cả quãng đường là :
(S1 + S2) / (t1 + t2) = (12+24) / (2+0,75) = 13 (km/h)
mÌNH MỎI TAY QUÁ
Lấy gốc tọa độ tại AA chiều dương là chiều từ AA đến BB. Gốc thời gian là lúc 7h7h
Phương trình chuyển động của :
Xe đi từ A:A: xA=36t(km−h)xA=36t(km−h)
Xe đi từ B:xB=96−28t(km−h)B:xB=96−28t(km−h)
Hai xe gặp nhau khi :xA=xB:xA=xB
→36t=96−28t→36t=96−28t
⇒t=1,5(h)⇒t=1,5(h)
xA=36t=36.1,5=54(km)xA=36t=36.1,5=54(km)
Hai xe gặp nhau lúc 8h30′8h30′. Nơi gặp nhau cách AA 54km54km
TH1:TH1: Hai xe cách nhau 24km24km trước khi hai xe gặp nhau
Hai xe cách nhau 24km
⇔⇔ xB−xA=24xB−xA=24
⇔⇔ 96−28t′−36t′=2496−28t′−36t′=24
⇔t′=1,125h⇔t′=1,125h
Vậy lúc 8h7phút30giây hai xe cách nhau 24km
TH2:TH2: Hai xe cách nhau 24k sau khi gặp nhau
Hai xe cách nhau 24km
⇔xA−xB=24⇔xA−xB=24
⇔36t′′−96+28t′′=24⇔36t″−96+28t″=24
⇔t′′=1,875(h)⇔t″=1,875(h)
Vậy lúc 8h52phút30giây hai xe cách nhau 24km
bài 2:
ta có:
thời gian người đó đi trên nửa quãng đường đầu là:
t1=S1/v1=S/2v1=S/24
thời gian người đó đi hết nửa đoạn quãng đường cuối là:
t2=S2/v2=S2/v2=S/40
vận tốc trung bình của người đó là:
vtb=S/t1+t2=S/(S/40+S/24)=S/S(140+124)=1/(1/24+1/40)
⇒vtb=15⇒vtb=15 km/h
bài 3:
thời gian đi nửa quãng đầu t1=(1/2) S.1/25=S/50
nửa quãng sau (1/2) t2.18+(1/2) t2.12=(1/2) S⇔t2=S/30
vận tốc trung bình vtb=S/(t1+t2)=S/S.(1/50+1/30)=1/(1/50+1/30)=18,75(km/h)
HT
gọi s1 = s2 = s3 = s/3
ta có : v1 = s1/t1 -> t1 = s/3.v1 = s/30
v2 = s2/t2 -> t2 = s/3.v2 = s/24
v3 = s3/t3 -> t3 = s/3.v3 = s/16
Ta có công thức vận tốc trung bình
Vtb = S/t => S/ t1+t2+t3 = S/ s/30 + s/24 + s/16
= S/ 33s/240 = 1/ 33/240 = 240/33 = 7 ( xấp xỉ )
Vận tốc trung bình:
\(v_{tb}=\dfrac{S}{t_1+t_2}=\dfrac{S}{\dfrac{18}{60}+\dfrac{12}{60}}=20\)
\(\Rightarrow S=20\cdot\left(\dfrac{18}{60}+\dfrac{12}{60}\right)=10km\)
Chọn D.
Tóm tắt :
S1 = 3,2km
t1 = 800s
v2 = 0,24km/ph
t2 = 1200s
S1 = ?
S = ?
vtb=?
Giải :
Vận tốc của người đó trên quãng đường đầu là :
\(v_1=\dfrac{S}{t}=\dfrac{3,2}{800}=0,004\left(km/s\right)\)
Vậy.....
b)
đổi 1200s = 20 phút
độ dài quãng đường thứ hai là :
\(S_2=v_2.t_2=0,24.20=4,8km\)
Vậy độ dài của quãng đường là :
\(S=S_1+S_2=3,2+4,8=8,0km\)
Vậy......
c)
Đổi :
\(v_2=0,24km/ph=0,004km/s\)
Vận tốc trung bình của người đó trên cả 2 quãng đường là :
\(\dfrac{v_1+v_2}{2}=\dfrac{0,004+0,004}{2}=0,004km/s\)
Vậy....
Ta có thời gian xe ô tô đi trên nữa quãng đường thứ nhất:
\(t_1=\dfrac{s_1}{v_1}=\dfrac{\dfrac{s_{AB}}{2}}{120}=\dfrac{s_{AB}}{240}\left(h\right)\)
Thời gian xe ô tô đi trên nữa quãng đường còn lại:
\(t_2=\dfrac{s_2}{v_2}=\dfrac{\dfrac{s_{AB}}{4}}{80}=\dfrac{s_{AB}}{320}\left(h\right)\)
Thời gian xe ô tô đi trên quãng đường còn lại:
\(t_3=\dfrac{s_3}{v_3}=\dfrac{\dfrac{s_{AB}}{4}}{40}=\dfrac{s_{AB}}{160}\left(h\right)\)
Vận tốc trung bình của xe ô tô là:
\(v_{tb}=\dfrac{s_1+s_2+s_3}{t_1+t_2+t_3}=\dfrac{s_{AB}}{\dfrac{s_{AB}}{240}+\dfrac{s_{AB}}{320}+\dfrac{s_{AB}}{160}}\approx74\left(km/h\right)\)
bài 4:
Giải :
a.Sau khi tăng tốc thêm 3 km/h thì đến nơi sớm hơn dự kiến là 1h ,mà S là như nhau nên theo bài ra ta có:
V1.t = (V1 +3 ).(t -1).
12.t = (12+3 ).(t -1).
12.t = 15.t -15.
15 = 15.t – 12.t.
5 = t.
b. Gọi t’1 là thời gian đi quãng đường s1: t’1 = S1/V1 ( / : là chia).
Thời gian sửa xe : t = 15 phút = ¼ h.
Thời gian đi quãng đường còn lại : t’2 = (S1-S2)/V2.
Theo bài ra ta có : t1 – (t’1 + ¼ + t’2) = 30 ph = ½ h.
T1 – S1/V1 – ¼ - (S-S1)/V2 = ½. (1).
S/V1 – S/V2 – S1.(1/V1- 1/V2) = ½ +1 /4 =3/4 (2).
Từ (1) và (2) suy ra: S1.(1/V1 – 1/V2) = 1- ¾ = ¼.
Hay S1 = ¼ . (V1- V2)/(V2-V1) = ¼ . (12.15)/(15-12) = 15 km.
bài 1:
a) Lúc xe từ B xuất phat thì xxe từ A đi được quáng đường: S=40 km
*/PTCĐ:
X1= 40+ 40*t
X2= 25*t
1)a) v1= \(\dfrac{300}{60}3.6\)=18(km/h)
v2= \(\dfrac{7.5}{0.5}\)=15(km/h)
vì v1 > v2 nên người thứ nhất đi nhanh hơn.
b) sn1=18.\(\dfrac{1}{3}\)=6(km)
sn2=15.\(\dfrac{1}{3}\)=5(km)
vậy sau 20 phút người thứ nhất cách người thứ hai 1 km.
2)
a) tAB=t1+t2=\(\dfrac{s_1}{v_1}+\dfrac{s_2}{v_2}=\dfrac{\dfrac{s}{2}}{v_1}+\dfrac{\dfrac{s}{2}}{v_2}=\dfrac{\dfrac{24}{2}}{20}+\dfrac{\dfrac{24}{2}}{12}=0.6+1=1.6\left(h\right)\)
b)vtb=\(\dfrac{s_1+s_2}{t_1+t_2}=\dfrac{24}{1.6}=15\)(km/h)