K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

a, A= (n+2)^2 + 1

Vì số cp chia 8 dư 0 hoặc 1 hoặc 4 => A=(n+2)^2 + 1 chia 8 dư 1 hoặc 2 hoặc 5

=> A ko chia hết cho 8

b, n lẻ nên n có dạng 2k+1(k thuộc N)

<=> 5^n = 5^2k+1= = 5^2k . 5 =  (4+1)^2k  .  5  =  (Bội của 4 +1) . 5 = Bội của 4 +5 chia 4 dư 1

=> B = 5^n - 1 chia hết cho 4

8 tháng 10 2017

Bài 1:

a,Ta có:\(\dfrac{n+8}{n}=1+\dfrac{8}{n}\)

Để \(n+8⋮n\) thì \(8⋮n\)

\(\Rightarrow n\in\left\{1;2;4;8\right\}\)

Vậy.....

b.c tương tự

Bài 2:

a.\(942^{60}-351^5=\left(.......6\right)-\left(..........1\right)=\left(.......5\right)⋮5\)

Do đó:\(942^{60}-351^{37}⋮5\left(dpcm\right)\)

b,\(99^5-98^4+97^3-96^2\\ =\left(.....9\right)-\left(....6\right)+\left(..........3\right)-\left(..........6\right)=\left(...........0\right)⋮10\)

Do đó:\(99^5-98^4+97^3-96^2⋮2;5\left(dpcm\right)\)

3 tháng 12 2015

Bài 1:

Để 275x chia hết cho 5 => x = 0 hoặc = 5

Trường hợp 1: 2750 chia hết cho 5

2750 chia hết cho 25

2750 chia hết cho 125

Trường hợp 2: 2755 chia hết cho 5

2755 không chia hết cho 25

2755 không chia hết cho 125

=> x = 0

3 tháng 12 2015

tất nhiên toán BDHSG mà 

 

Câu 2:

n lẻ nên n=2k+1

\(n^2+n+1\)

\(=\left(2k+1\right)^2+2k+1+1\)

\(=4k^2+4k+1+2k+2\)

\(=4k^2+6k+3=2\left(2k^2+3k\right)+3⋮̸2\)

hay \(n^2+n+1⋮̸8\)

a: \(5^n-1=\left(5-1\right)\cdot A=4\cdot A⋮4\)

b: \(A=n^2+n+1=n\left(n+1\right)+1\)

Vì n;n+1 là hai số tự nhiên liên tiếp

 nên \(n\left(n+1\right)⋮2\)

\(\Leftrightarrow A⋮̸2\)

=>\(A⋮̸4\)