K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2016

a) Dễ thấy : \(\Delta ABC\) đồng dạng với \(\Delta DEC\) (g.g) (Góc A = Góc CDE; góc C chung)

b) Từ a => \(\frac{AB}{DE}=\frac{AC}{DC}=\frac{BC}{EC}\)

c) Từ b => DC.BC = EC.AC

5 tháng 5 2019

Trường hợp đồng dạng thứ ba

1.Xét tam giác ABD và tam giác ACB có

góc ABD = góc ACB

Góc A là góc chung

Suy ra tam giác ABD đồng dạng với tam giác ACB (g-g)

2. ⇒ \(\frac{AB}{AC}=\frac{AD}{AB}\)

⇒ AB . AB = AC . AD

⇒ AB2 = AD .AC

2 tháng 3 2016

câu 1 : vì MN là đường TB của tam giác ABC => MN // BC nên theo hệ quả định lí ta-lét , ta có :


\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)
=> tam giác ABC đồng dạng với tam giác AMN theo trường hợp cạnh cạnh cạnh

4 tháng 4 2021

(Hình bạn tự vẽ)

a) Ta có: \(\dfrac{AB}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\)

\(\dfrac{BC}{BD}=\dfrac{9}{6+7,5}=\dfrac{2}{3}\)

Xét ΔABC và ΔCBD có:

Góc B chung 

\(\dfrac{AB}{BC}=\dfrac{BC}{BD}\)\(\left(=\dfrac{2}{3}\right)\)

⇒ΔABC ∼ ΔCBD (c.g.c)

b) Theo câu a ta có: ΔABC ∼ ΔCBD 

⇒ \(\dfrac{AB}{AC}=\dfrac{CB}{CD}\)\(=\dfrac{6}{7,5}=\dfrac{9}{CD}\)

⇒ \(CD=\dfrac{7,5.9}{6}\)\(=\dfrac{45}{4}=11,25\)

c) Theo câu a ta có: ΔABC ∼ ΔCBD 

⇒ Góc BAC = góc BCD        (1)

Xét ΔBCD có: \(\dfrac{BA}{AD}=\dfrac{BC}{CD}\)

Hay \(\dfrac{6}{7,5}=\dfrac{9}{11,25}\)\(=\dfrac{4}{5}\)           

⇒ CA là phân giác góc BCD

⇒ Góc ACB= góc ACD          (2)

Từ (1), (2) ⇒ góc BAC = 2 góc ACB

7 tháng 3 2021

A B C 10 20 D 5

Xét tam giác ABD và tam giác ACB ta có ; 

^BAD = ^BAC = 900 

\(\frac{AB}{AC}=\frac{AD}{AB}=\frac{10}{20}=\frac{5}{10}=\frac{1}{2}\)

Vậy tam giác ABD ~ tam giác ACB ( c.g.c )

=> ^ABD = ^ACB ( 2 góc tương ứng )