Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\) \(ĐKXĐ:x\ge0;x\ne1;x\ne4\)
\(A=\left[\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}\right]:\left[\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}-4}{x-1}\right]\)
\(A=\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\left[\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
vậy \(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b)theo bài ra: \(A=\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right).\sqrt{x}=\sqrt{x}+2\)
\(\Leftrightarrow x-\sqrt{x}-\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}+1-3=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2-\left(\sqrt{3}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1-\sqrt{3}=0\\\sqrt{x}-1+\sqrt{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\sqrt{3}+1\\\sqrt{x}=1-\sqrt{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\left(\sqrt{3}+1\right)^2\\x=\left(1-\sqrt{3}\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+2\sqrt{3}+1\\x=3-2\sqrt{3}+1\end{cases}}\)
vậy......
câu 2:\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}.\left(\sqrt{x}+1\right)=m\left(x+1\right)-2\Leftrightarrow\sqrt{x}-2-mx-m+2=0\Leftrightarrow\sqrt{x}=m\left(x+1\right)\Leftrightarrow m=\frac{\sqrt{x}}{x+1}\)
vì x>=0 =>x+1>0 \(\sqrt{x}\ge0\)=> m phải >=0
\(x\ne4\Rightarrow x+1\ne5;\sqrt{x}\ne2\Rightarrow m\ne\frac{2}{5}\)
\(x\ne9\Rightarrow x+1\ne10;\sqrt{x}\ne3\Rightarrow m\ne\frac{3}{10}\)